Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat
Abstract
:1. Introduction
2. Material and Methods
2.1. Biological Samples
2.2. Analytical Method Chemicals Used and Preparation of Samples
2.3. Trace Element Determination
2.4. Quality Control and Assurance
2.5. Statistical Analyses and Risk Assessment
3. Results and Discussion
3.1. Cobalt
3.2. Chromium
3.3. Copper
3.4. Iron
3.5. Selenium
3.6. Zinc
3.7. Nickel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Department of Economic and Social Affairs. Global Population Growth and Sustainable Development. United Nations, 2021. Available online: https://www.unpopulation.org (accessed on 12 September 2023).
- Ahmed, I.M.A.; Al-Juhaimi, F.Y.; Bhat, Z.F.; Carne, A.; Bekhit, A.E.D. Non-traditional meat sources, production, nutritional and health aspects, consideration of safety aspects and religious views. In Alternative Proteins: Safety and Food Security Considerations; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Poławska, E.; Cooper, R.G.; Jóźwik, A.; Pomianowski, J. Meat from alternative species-Nutritive and dietetic value, and its benefit for human health—A review. CYTA J. Food 2013, 11, 37–42. [Google Scholar] [CrossRef]
- Danzberger, J.B. La Caza: Un Elemento Esencial en el Desarrollo Rural; Colección Mediterráneo Económico; CAJAMAR Caja Rural: Almería, Spain, 2009; pp. 183–203. ISBN -13:978-84-95531-43-8. [Google Scholar]
- Czarniecka-Skubina, E.; Stasiak, D.M.; Latoch, A.; Owczarek, T.; Hamulka, J. Consumers’ Perception and Preference for the Consumption of Wild Game Meat among Adults in Poland. Foods 2022, 11, 830. [Google Scholar] [CrossRef]
- Thomas, V.G.; Pain, D.J.; Kanstrup, N.; Cromie, R. Increasing the Awareness of Health Risks from Lead-Contaminated Game Meat Among International and National Human Health Organizations. Eur. J. Environ. Public Health 2022, 6, em0110. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In Meat and Nutrition; Chhabi, L.R., Ed.; Pai Chai University: Daejeon, South Korea, 2021; pp. 77–100. ISBN 978-1-83968-702-0. [Google Scholar] [CrossRef]
- Sevillano Morales, J.; Moreno-Ortega, A.; Amaro Lopez, M.A.; Arenas Casas, A.; Cámara-Martos, F.; Moreno-Rojas, R. Game meat consumption by hunters and their relatives: A probabilistic approach. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1739–1748. [Google Scholar] [CrossRef]
- Andreotti, A.; Borghesi, F.; Aradis, A. Lead ammunition residues in the meat of hunted woodcock: A potential health risk to consumers. Ital. J. Anim. Sci. 2016, 15, 22–29. [Google Scholar] [CrossRef]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. Ital. J. Anim. Sci. 2010, 9, 318–331. [Google Scholar]
- Soriano, A.; Murillo, P.; Perales, M.; Sánchez-García, C.; Murillo, J.A.; García Ruiz, A. Nutritional quality of wild Iberian red deer (Cervus elaphus hispanicus) meat: Effects of sex and hunting period. Meat Sci. 2020, 168, 108189. [Google Scholar] [CrossRef]
- Tomasevic, I.; Novakovic, S.; Solowiej, B.; Zdolec, N.; Skunca, D.; Krocko, M.; Nedomova, S.; Kolaj, R.; Aleksiev, G.; Djekic, I. Consumers’ perceptions, attitudes and perceived quality of game meat in ten European countries. Meat Sci. 2018, 142, 5–13. [Google Scholar] [CrossRef]
- Fiala, M.; Marveggio, D.; Viganò, R.; Demartini, E.; Nonini, L.; Gaviglio, A. LCA and wild animals: Results from wild deer culled in a northern Italy hunting district. J. Clean. Prod. 2020, 244, 118667. [Google Scholar] [CrossRef]
- Triumf, E.C.; Purchas, R.W.; Mielnik, M.; Maehre, H.K.; Elvevoll, E.; Slinde, E.; Egelandsdal, B. Composition and some quality characteristics of the longissimus muscle of reindeer in Norway compared to farmed New Zealand red deer. Meat Sci. 2012, 90, 122–129. [Google Scholar] [CrossRef]
- Strazdina, A.; Jemeljanovs, A.; Sterna, V.; Ikauniece, D. Nutritional Characteristics of wild boar meat hunted in Latvia. Foodbalt 2014, 1, 32–36. [Google Scholar]
- Lorenzo, J.M.; Maggiolino, A.; Gallego, L.; Pateiro, M.; Serrano, M.P.; Domínguez, R.; García, A.; Landete-Castillejos, T.; De Palo, P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019, 99, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, C.; Urda, V.; Lambarri, M.; Prieto, I.; Andueza, A.; Villanueva, L.F. Evaluation of the economics of sport hunting in Spain through regional surveys. Int. J. Environ. Stud. 2021, 78, 517–531. [Google Scholar] [CrossRef]
- Pérez-Serrano, M.; Maggiolino, A.; Landete-Castillejos, T.; Pateiro, M.; Barbería, J.P.; Fierro, Y.; Domínguez, R.; Gallego, L.; García, A.; De Palo, P.; et al. Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand. Sci. Rep. 2020, 10, 12157. [Google Scholar] [CrossRef]
- Ministry for the Ecological Transition and the Demographic Challenge. 2023. Available online: https://www.miteco.gob.es/en/biodiversidad/estadisticas/Est_Anual_Caza.aspx (accessed on 4 September 2023).
- UNE EN 13804:2013. Foodstuffs-Determination of Elements and Their Chemical Species-General Considerations and Specific Requirements. Available online: https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0051513 (accessed on 4 May 2023).
- Sevillano-Caño, J.; Cámara-Martos, F.; Aguilar-Luque, E.M.; Cejudo-Gómez, M.; Moreno-Ortega, A.; Sevillano-Morales, J.S. Trace Element Concentrations in Migratory Game Bird Meat: Contribution to Reference Intakes Through a Probabilistic Assessment. Biol. Trace Elem. Res. 2020, 197, 651–659. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients: Summary Report; EFSA Supporting Publication: Parma, Italy, 2017; p. 15121. [Google Scholar] [CrossRef]
- Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) on the Nutritional Reference Intakes for the Spanish Population. 2019. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/INR.pdf (accessed on 5 September 2023).
- Santiago, D.; Motas-Guzman, M.; Reja, A.; María-Mojica, P.; Rodero, B.; García-Fernández, A.J. Lead and cadmium in red deer and wild boar from Sierra Morena mountains (Andalusia, Spain). Bull. Environ. Contam. Toxicol. 1998, 61, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Ertl, K.; Kitzer, R.; Goessler, W. Elemental composition of game meat from Austria. Food Addit. Contam. Part B Surveill. 2016, 9, 120–126. [Google Scholar] [CrossRef]
- Kalinina, S.; Panchenko, D.; Ilyukha, V.; Canfield, A.; Baishnikova, I.; Antonova, E.; Nikerova, K. Elements and antioxidants in wild boar from northwestern Russia. Eur. J. Wildl. Res. 2022, 68, 22. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Udała, J.; Kruzhel, B.; Ligocki, M. Content of essential and non-essential elements in wild animals from western Ukraine and the health risks associated with meat and liver consumption. Chemosphere 2020, 244, 125506. [Google Scholar] [CrossRef]
- Gašparík, J.; Binkowski, Ł.J.; Jahnátek, A.; Šmehýl, P.; Dobiaš, M.; Lukáč, N.; Błaszczyk, M.; Semla, M.; Massanyi, P. Levels of Metals in Kidney, Liver, and Muscle Tissue and their Influence on the Fitness for the Consumption of Wild Boar from Western Slovakia. Biol. Trace Elem. Res. 2017, 177, 258–266. [Google Scholar] [CrossRef]
- Cawthorn, D.M.; Fitzhenry, L.B.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Chemical composition of wild fallow deer (Dama dama) meat from South Africa: A preliminary evaluation. Foods 2020, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Amici, A.; Danieli, P.P.; Russo, C.; Primi, R.; Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus. scrofa) organs and tissues in different areas of the Province of Viterbo (Central Italy). Ital. J. Anim. Sci. 2012, 11, 354–362. [Google Scholar] [CrossRef]
- Długaszek, M.; Kopczyński, K. Elemental composition of muscle tissue of wild animals from central region of Poland. Int. J. Environ. Res. 2013, 7, 973–978. [Google Scholar] [CrossRef]
- Tekeli, I.O.; Yipel, M.; Sengul, S.A.; Sakin, F. Levels of Metals and Organochlorine Pesticides in Kidney, Liver, and Muscle Tissues of Wild Boars (Sus. scrofa) from Hatay Province, Eastern Mediterranean Region, Turkey. Bull. Environ. Contam. Toxicol. 2021, 106, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Lénárt, Z.; Bartha, A.; Abonyi-Tóth, Z.; Lehel, J. Monitoring of metal content in the tissues of wild boar (Sus scrofa) and its food safety aspect. Environ. Sci. Pollut. Res. 2023, 30, 15899–15910. [Google Scholar] [CrossRef]
- Jorhem, L.; Sundström, B.; Engman, J.; Astrand-Yates, C.; Olsson, I. Levels of certain trace elements in beef and pork imported to Sweden. Food Addit. Contam. 2016, 13, 737–745. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595. [Google Scholar] [CrossRef]
- Saraiva, M.; Chekri, R.; Leufroy, A.; Guérin, T.; Sloth, J.J.; Jitary, P. Development and validation of a single run method based on species specific isotope dilution and HPLC-ICP-MS for simultaneous species interconversion correction and speciation analysis of Cr(III)/Cr(VI) in meat and dairy products. Talanta 2021, 222, 121538. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Sevillano-Morales, J.; Rubio-Pedraza, L.; Bonilla-Herrera, J.; de Haro-Bailón, A. Comparative Effects of Organic and Conventional Cropping Systemson Trace Elements Contents in Vegetable Brassicaceae: Risk Assessment. Appl. Sci. 2021, 11, 707. [Google Scholar] [CrossRef]
- Pérez-Serrano, M.; De Palo, P.; Maggiolino, A.; Pateiro, M.; Gallego, L.; Domínguez, R.; García-Díaz, A.; Landete-Castillejos, T.; Lorenzo, J.M. Seasonal variations of carcass characteristics, meat quality and nutrition value in Iberian wild red deer. Span. J. Agric. Res. 2020, 18, 16. [Google Scholar] [CrossRef]
- Palazzo, M.; Tavaniello, S.; Petrecca, V.; Zejnelhoxha, S.; Wu, M.; Mucci, R.; Maiorano, G. Quality and safety of meat from wild boar hunted in Molise region. Ital. J. Anim. 2021, 20, 1889–1898. [Google Scholar] [CrossRef]
- Schöne, F.; Ibel, A.; Lorkowski, S.; Ihling, M.; Ramminger, S.; Kirmse, R.; Spörl, K.; Kiebking, G.; Glei, M. Composition of pork and German meat products with a focus on iron, selenium and iodine. J. Food Compost. Anal. 2023, 119, 105246. [Google Scholar] [CrossRef]
- Pérez-Serrano, M.; Maggiolino, A.; Lorenzo, J.; De Palo, P.; García, A.; Landete-Castillejos, T.; Gambín, P.; Cappelli, J.; Domínguez, R.; Pérez-Barbería, F.J.; et al. Meat quality of farmed red deer fed a balanced diet: Effects of supplementation with copper bolus on different muscles. Animal 2019, 13, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Bertinato, J. Copper: Physiology. In Encyclopedy of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies. Tolerable Upper Intake Levels for Vitamins and Minerals: European Food Safety Authority. 2006. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 30 November 2023).
- Babicz, M.; Kasprzyk, A. Comparative analysis of the mineral composition in the meat of wild boar and domestic pig. Ital. J. Anim. 2019, 18, 1013–1020. [Google Scholar] [CrossRef]
- Czerwonka, M.; Tokarz, A. Iron in red meat-friend or foe. Meat Sci. 2017, 123, 157–165. [Google Scholar] [CrossRef]
- Pretorius, B.; Schönfeldt, H.; Hall, N. Total and haem iron content lean meat cuts and the contribution to the diet. Food Chem. 2016, 193, 97–101. [Google Scholar] [CrossRef]
- USDA, U.S. Department of Agriculture. National Nutrient Database for Standard Reference. 2015. Available online: http://ndb.nal.usda.gov/ndb/foods/ (accessed on 16 October 2023).
- Andrew County Health Department. Safe Handling of Wild Game Meat. 2014. Available online: https://www.andrewcountyhealth.com/index.php/resources/news/74-wild-game-meats (accessed on 30 November 2023).
- Valenzuela, C.; López de Romaña, D.; Olivares, M.; Morales, M.S.; Pizarro, F. Total iron and heme iron content and their distribution in beef meat and viscera. Biol. Trace Elem. Res. 2009, 132, 103–111. [Google Scholar] [CrossRef]
- Ramos, A.; Cabrera, M.C.; Saadoun, A. Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 2012, 91, 116–124. [Google Scholar] [CrossRef]
- Amaro, M.A.; Cámara, F. Iron availability: An update review. Int. J. Food Sci. Nutr. 2004, 55, 597–606. [Google Scholar]
- Dannenberger, D.; Nuernberg, G.; Nuernberg, K.; Hagemann, E. The effects of gender, age and region on macro and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg Western Pomerania (Germany). Meat Sci. 2013, 94, 39–46. [Google Scholar] [CrossRef]
- Skibniewska, E.M.; Skibniewski, M.; Kołnierzak, M. Muscle selenium content in red deer (Cervus elaphus), roe deer (Capreolus capreolus) and cattle (Bos taurus) from north-eastern Poland. J. Elem. 2020, 25, 621–631. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Ramírez-Ojeda, A.M.; Jiménez-Mangas, M.; Sevillano-Morales, J.; Moreno-Rojas, R. Selenium and cadmium in bioaccessible fraction of organic weaning food: Risk assessment and influence of dietary component. J. Trace Elem. Med. Biol. 2019, 56, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.; Dawczynski, C.; Schwarz, M.; Maares, M.; Kipp, K.; Haase, H.; Kipp, A.P. Selenium, Zinc, and Copper Status of Vegetarians and Vegans in Comparison to Omnivores in the Nutritional Evaluation (NuEva) Study. Nutrients 2023, 15, 3538. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- European Food Safety Authority NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the tolerable upper intake level for selenium. EFSA J. 2023, 21, 7704. [Google Scholar] [CrossRef]
- Lazarus, M.; Orct, T.; Blanusai, M.; Vickovic, I.; Sostaric, B. Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Addit. Contam. 2008, 25, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk, A.; Kilar, J. Selected minerals in skeletal muscles of fallow deer (Dama dama) and red deer (Cervus elaphus) farmed in the organic system–Preliminary study. Acta Sci. Pol. Zootechnica 2022, 21, 3–8. [Google Scholar] [CrossRef]
- Jarzynska, G.; Falandysz, J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats od Red Deer (Cervus elaphus)-Consequeces to human health. Environ. Int. 2011, 37, 882–888. [Google Scholar] [CrossRef]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef]
- Nebl, J.; Schuchardt, J.P.; Strohle, A.; Wasserfurth, P.; Haufe, S.; Eigendorf, J.; Tegtbur, U.; Hahn, A. Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns. Nutrients 2019, 11, 1146. [Google Scholar] [CrossRef]
- Weikert, C.; Trefflich, I.; Menzel, J.; Obeid, R.; Longree, A.; Dierkes, J.; Meyer, K.; Herter-Aeberli, I.; Mai, K.; Stangl, G.I.; et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Arztebl. Int. 2020, 117, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ojeda, A.M.; Moreno-Rojas, R.; Sevillano-Morales, J.; Cámara-Martos, F. Influence of dietary components on minerals and trace elements bioaccessible fraction in organic weaning food: A probabilistic assessment. Eur. Food Res. Technol. 2016, 243, 639–650. [Google Scholar] [CrossRef]
- Küpper, H.; Kroneck, P.M.H. Metal Ions in Life Sciences; John Wiley & Sons: Chichester, UK, 2007; pp. 3–62. [Google Scholar]
- Mataix-Verdú, J.; Llopis-González, J. Minerales. Nutrición y Alimentación Humana, 2nd ed.; Ergón: Madrid, Spain, 2015; pp. 265–301. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar]
- European Food Safety Authority (EFSA). Autoridad Europea de Seguridad Alimentaria. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268–6369. [Google Scholar]
- Morales, J.S.; Rojas, R.M.; Pérez-Rodríguez, F.; Casas, A.A.; López, M.A. Risk assessment of the lead intake by consumption of red deer and wild boar meat in Southern Spain. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 1021–1033. [Google Scholar] [CrossRef]
- Sevillano-Morales, J.S.; Sevillano-Caño, J.; Cámara-Martos, F.; Moreno-Ortega, A.; Amaro-López, M.A.; Arenas-Casas, A.; Moreno-Rojas, R. Risk assessment of Cd, Cu, and Pb from the consumption of hunted meat: Red-legged partridge and wild rabbit. Biol. Trace Elem. Res. 2019, 199, 1843–1854. [Google Scholar] [CrossRef]
- Sevillano-Caño, J.; Cámara-Martos, F.; Zamora-Díaz, R.; Sevillano-Morales, J.S. Lead concentration in game migratory upland bird meat: Influence of ammunition impacts and health risk assessment. Food Control 2021, 124, 107835. [Google Scholar] [CrossRef]
Co (λ = 240.7 nm) | Cr (λ = 357.9 nm) | Cu (λ = 324.8 nm) | Ni (λ = 232.0 nm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Step | T (°C) | t (s) | T (°C) | t (s) | T (°C) | t (s) | T (°C) | t (s) | Argon Flow (L/min) |
Drying | 85 | 5 | 85 | 5 | 85 | 5 | 85 | 5 | 0.3 |
95 | 40 | 95 | 40 | 95 | 40 | 95 | 40 | 0.3 | |
120 | 8 | 120 | 20 | 120 | 10 | 120 | 10 | 0.3 | |
Pyrolysis | 750 | 5 | 1000 | 5 | 800 | 5 | 800 | 5 | 0.3 |
750 | 3 | 1000 | 3 | 800 | 3 | 800 | 3 | 0 | |
Atomization | 2300 | 2.8 | 2600 | 2.8 | 2300 | 2.8 | 2400 | 2.8 | 0 |
Cleaning | 2300 | 2 | 2600 | 2 | 2300 | 2 | 2400 | 2 | 0.3 |
Element | LOD (mg/kg) | LOQ (mg/kg) | Mussel Tissue ERM—CE278k | ||
---|---|---|---|---|---|
Certified | Found | Recovery (%) | |||
Co | 0.010 | 0.032 | 0.21 * | 0.18 ± 0.01 | 86 |
Cr | 0.006 | 0.022 | 0.73 ± 0.22 | 0.77 ± 0.12 | 105 |
Cu | 0.078 | 0.260 | 5.98 ± 0.27 | 6.38 ± 0.66 | 107 |
Fe | 1.092 | 3.624 | 161 ± 8 | 174 ± 7 | 108 |
Ni | 0.023 | 0.077 | 0.69 ± 0.15 | 5.00 ± 0.21 | 102 |
Se | 0.0001 | 0.001 | 1.62 ± 0.12 | 1.55 ± 0.23 | 97 |
Zn | 1.203 | 4.841 | 71 ± 4 | 74 ± 4 | 104 |
Statistic | Red Deer | Wild Boar |
---|---|---|
mean | 4.70 | 4.32 |
standard deviation | 6.15 | 5.88 |
median | 2.00 | 1.75 |
95 percentile | 18.7 | 17.7 |
minimum | 0.13 | 0.13 |
maximum | 30.0 | 30.0 |
Element | Consumers | EFSA [22] | AESAN [23] |
---|---|---|---|
Adequate Intake | Dietary Reference Intake | ||
Co | men | 0.065 | |
women | |||
Cr | men | 0.035 | |
women | 0.025 | ||
Cu | men | 1.6 | 1.3 |
women | 1.3 | 1.1 | |
Fe | men | 11 | 9.1 |
women | 16 | 18 | |
Se | men | 0.07 | 0.070 |
women | 0.055 | ||
Zn | men | 12.7 | 11 |
women | 9 |
Red Deer (40) | Wild Boar (60) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Mean | SD | Median | Min-Max | Mean | SD | Median | Min-Max | p |
Co | <LOQ | <LOQ | <LOQ | <LOQ–0.08 | <LOQ | <LOQ | <LOQ | <LOQ–0.07 | >0.05 |
Cr | 0.25 | 0.20 | 0.20 | 0.08–0.96 | 0.16 | 0.16 | 0.13 | 0.03–1.30 | <0.001 |
Cu | 1.87 | 0.76 | 1.75 | 0.68–4.73 | 2.23 | 0.77 | 2.05 | 1.03–5.94 | <0.001 |
Fe | 52.9 | 46.8 | 38.4 | 12.7–267 | 53.3 | 36.8 | 40.8 | 14.6–180 | >0.05 |
Se | 0.05 | 0.07 | 0.03 | 0.02–0.41 | 0.19 | 0.09 | 0.20 | 0.02–0.56 | <0.001 |
Ni | 0.40 | 0.15 | 0.40 | 0.12–0.67 | 0.60 | 0.21 | 0.50 | 0.27–1.18 | <0.001 |
Zn | 44.3 | 17.2 | 45.8 | 4.60–75.8 | 29.0 | 10.6 | 27.4 | 10.8–62.0 | <0.001 |
Element | Statistic | Intake of Red Deer Meat | Intake of Wild Boar Meat |
---|---|---|---|
Co | 5th | 0.003 | 0.003 |
50th | 0.046 | 0.043 | |
95th | 0.197 | 0.188 | |
Cr | 5th | 0.010 | 0.026 |
50th | 0.669 | 0.353 | |
95th | 2.893 | 1.526 | |
Cu | 5th | 0.198 | 0.581 |
50th | 3.583 | 3.162 | |
95th | 27.80 | 29.33 | |
Fe | 5th | 10.24 | 9.150 |
50th | 138.3 | 76.45 | |
95th | 597.8 | 638.8 | |
Ni | 5th | 0.090 | 0.157 |
50th | 0.748 | 0.855 | |
95th | 6.229 | 7.878 | |
Se | 5th | 0.009 | 0.035 |
50th | 0.128 | 0.287 | |
95th | 0.554 | 2.326 | |
Zn | 5th | 10.35 | 6.120 |
50th | 84.85 | 46.34 | |
95th | 695.8 | 350.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevillano-Morales, J.; Sevillano-Caño, J.; Amaro-López, M.A.; Cámara-Martos, F. Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat. Appl. Sci. 2023, 13, 13263. https://doi.org/10.3390/app132413263
Sevillano-Morales J, Sevillano-Caño J, Amaro-López MA, Cámara-Martos F. Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat. Applied Sciences. 2023; 13(24):13263. https://doi.org/10.3390/app132413263
Chicago/Turabian StyleSevillano-Morales, J., J. Sevillano-Caño, M. A. Amaro-López, and F. Cámara-Martos. 2023. "Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat" Applied Sciences 13, no. 24: 13263. https://doi.org/10.3390/app132413263
APA StyleSevillano-Morales, J., Sevillano-Caño, J., Amaro-López, M. A., & Cámara-Martos, F. (2023). Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat. Applied Sciences, 13(24), 13263. https://doi.org/10.3390/app132413263