Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Specimen Manufacturing Method
2.3. Physical and Mechanical Properties
2.4. Durability: Resistance to Acid Attack
2.5. Environmental Study
2.5.1. Leaching Study
2.5.2. Radiological Study
3. Results and Discussion
3.1. Physico-Mechanical Properties of Road-Base Binder
3.2. Durability: Acid Resistance of Roa- Base Binders
3.3. Leaching Results
3.4. Radiological Results
3.5. Statistical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwański, M.; Buczyński, P.; Mazurek, G. Optimization of the road binder used in the base layer in the road construction. Constr. Build. Mater. 2016, 124, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Cherian, C.; Siddique, S. Engineering and environmental evaluation for utilization of recycled pulp mill fly ash as binder in sustainable road construction. J. Clean. Prod. 2021, 298, 126758. [Google Scholar] [CrossRef]
- Vanhanen, H.; Dahl, O.; Joensuu, S. Utilization of wood ash as a road construction material-sustainable use of wood ashes. Sustain. Environ. Res. 2014, 24, 457–465. [Google Scholar]
- Zhao, Y.; Wu, P.; Qiu, J.; Guo, Z.; Tian, Y.; Sun, X.; Gu, X. Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill. Powder Technol. 2022, 395, 652–662. [Google Scholar] [CrossRef]
- EN 13282-2:2016; Hydraulic Road Binders—Part 2: Normal Hardening Hydraulic Road Binders—Composition, Specifications, and Conformity Criteria. UNE: Madrid, Spain, 2016.
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; Wong, J.W.C. Trends in mitigation of industrial waste: Global health hazards, environmental implications, and waste derived economy for environmental sustainability. Sci. Total Environ. 2022, 81, 152357. [Google Scholar] [CrossRef] [PubMed]
- Secher, A.Q.; Collin, C.; Linnet, A. Construction Product Declarations and Sustainable Development Goals for Small and Medium Construction Enterprises. Procedia CIRP 2018, 69, 54–58. [Google Scholar] [CrossRef]
- Mas, J.L.; Caro Ramírez, J.R.; Hurtado Bermúdez, S.; Leiva Fernández, C. Assessment of natural radioactivity levels and radiation exposure in new building materials in Spain. Radiat. Prot. Dosim. 2012, 194, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, C.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Peceño, B.; Alonso-Fariñas, B.; Vilches, L.F.; Leiva, C. Study of seashell waste recycling in fireproofing material: Technical, environmental, and economic assessment. Sci. Total Environ. 2012, 790, 148102. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Nguyen, T.T.; Vu, N.D.; Soda, S.; Nguyen, T.H.H.; Nguyen, M.K.; Tran, T.V.H.; Dang, T.T.; et al. White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater. Sci. Total Environ. 2020, 741, 140483. [Google Scholar] [CrossRef]
- Ribeiro, J.C.A.; Vasques, I.C.F.; Teodoro, J.C.; Guerra, M.B.B.; Da Silva Carneiro, J.S.; Melo, L.C.A.; Guilherme, L.R.G. Fast and effective arsenic removal from aqueous solutions by a novel low-cost eggshell byproduct. Sci. Total Environ. 2021, 783, 147022. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Villarejo, L.; Eliche-Quesada, D.; Carrasco-Hurtado, B.; Sánchez-Soto, P.J. Valorization of Olive Biomass Fly Ash for Production Eco Friendly Ceramic Bricks. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–294. [Google Scholar] [CrossRef]
- Erses Yay, A.S.; Birinci, B.; Açıkalın, S.; Yay, K. Hydrothermal carbonization of olive pomace and determining the environmental impacts of post-process products. J. Clean. Prod. 2021, 315, 128087. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Doh, S.I.; Chin, S.C. Eggshell as a partial cement replacement in concrete development. Mag. Concr. Res. 2018, 70, 662–670. [Google Scholar] [CrossRef]
- Sathiparan, N. Utilization prospects of eggshell powder in sustainable construction material—A review. Constr. Build. Mater. 2021, 293, 123465. [Google Scholar] [CrossRef]
- Her, S.; Park, T.; Zalnezhad, E.; Bae, S. Synthesis and characterization of cement clinker using recycled pulverized oyster and scallop shell as limestone substitutes. J. Clean. Prod. 2021, 278, 123987. [Google Scholar] [CrossRef]
- Her, S.; Park, J.; Li, P.; Bae, S. Feasibility study on the utilization of pulverized eggshell waste as an alternative to limestone in raw materials for Portland cement clinker production. Constr. Build. Mater. 2022, 324, 126589. [Google Scholar] [CrossRef]
- Peceño, B.; Arenas, C.; Alonso-Fariñas, B.; Leiva, C. Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete. J. Mater. Civ. Eng. 2019, 31, 0002719. [Google Scholar] [CrossRef]
- Peceño, B.; Leiva, C.; Alonso-Fariñas, B.; Gallego-Schmid, A. Is recycling always the best option? Environmental assessment of recycling of seashell as aggregates in noise barriers. Processes 2020, 8, 8070776. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Carro-López, D.; Pérez-Ordóñez, J.L. Assessment of mussel shells building solutions: A real-scale application. J. Build. Eng. 2021, 44, 102635. [Google Scholar] [CrossRef]
- Lila, K.; Belaadi, S.; Solimando, R.; Zirour, Z.R. Valorisation of organic waste: Use of olive kernels and pomace for cement manufacture. J. Clean. Prod. 2020, 277, 123703. [Google Scholar] [CrossRef]
- Fernández-Pereira, C.; De La Casa, J.A.; Gómez-Barea, A.; Arroyo, F.; Leiva, C.; Luna, Y. Application of biomass gasification fly ash for brick manufacturing. Fuel 2011, 90, 220–232. [Google Scholar] [CrossRef]
- Vilches, L.F.; Leiva, C.; Vale, J.; Olivares, J.; Fernández-Pereira, C. Fire resistance characteristics of plates containing a high biomass-ash proportion. Ind. Eng. Chem. Res. 2007, 46, 4824–4829. [Google Scholar] [CrossRef]
- Leiva, C.; Gómez-Barea, A.; Vilches, L.F.; Ollero, P.; Vale, J.; Fernández-Pereira, C. Use of biomass gasification fly ash in lightweight plasterboard. Energy Fuels 2007, 21, 361–367. [Google Scholar] [CrossRef]
- Cheboub, T.; Senhadji, Y.; Khelafi, H.; Escadeillas, G. Investigation of the engineering properties of environmentally friendly self-compacting lightweight mortar containing olive kernel shells as aggregate. J. Clean. Prod. 2020, 249, 119406. [Google Scholar] [CrossRef]
- Ashkoo, A.; Amininasab, S.M.; Zamani-Ahmadmahmoodi, R. Bioaccumulation of heavy metals in eggshell and egg content of seabirds: Lesser (Thalasseus bengalensis) and Greater Crested Tern (Thalasseus bergii). Mar. Pollut. Bull. 2020, 154, 111126. [Google Scholar] [CrossRef] [PubMed]
- Orłowski, G.; Kasprzykowski, Z.; Dobicki, W.; Pokorny, P.; Wuczyński, A.; Polechoński, R.; Mazgajski, T.D. Residues of chromium, nickel, cadmium, and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci Total Environ 2014, 490, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- El-Sorogy, A.S.; Youssef, M. Assessment of heavy metal contamination in intertidal gastropod and bivalve shells from central Arabian Gulf coastline, Saudi Arabia. J. Afr. Earth Sci. 2015, 111, 41–53. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements. UNE: Madrid, Spain, 2011.
- ASTM D3682-21; Standard Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D854-14; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2014.
- EN 1936:2006; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. UNE: Madrid, Spain, 2006.
- EN 196-1:2018; Methods of Testing Cement—Part 1: Determination of Strength. UNE: Madrid, Spain, 2018.
- Leiva, C.; Arenas, C.; Vilches, L.F.; Arroyo, F.; Luna-Galiano, Y. Assessing durability properties of noise barriers made of concrete incorporating bottom ash as aggregates. Eur. J. Environ. Civ. Eng. 2019, 23, 1485–1496. [Google Scholar] [CrossRef]
- EN 12457-4:2003; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size Below 10 mm (Without or with Size Reduction). UNE: Madrid, Spain, 2003.
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste.European Commission. 1999. Available online: http://data.europa.eu/eli/dir/1999/31/oj (accessed on 8 March 2022).
- Waste Disposal at Landfills. Transposition to the Portuguese Law of Council; Directive 1999/31/CE, April 26, DL 183/2009; Portuguese Mint and Official Printing Office: Lisbon, Portugal, 2009.
- Ministero dell’Ambiente e della Tutela del Territorio. Decreto 5 Aprile 2006, n 186. Regolamento Recante Modifiche al Decreto Ministeriale 5 Febbraio 1998 “Individuazione dei Rifiuti non Pericolosi Sottoposti alle Procedure Semplificate di Recupero, ai Sensi degli Articoli 31 e 33 del Decreto Legislativo 5 febbraio 1997, n. 22”; GU Serie Generale n.115 del 19-05-2006; Gazzeta Ufficiale: Rome, Italy, 2006; Available online: https://www.gazzettaufficiale.it/eli/id/2006/05/19/006G0202/sg (accessed on 25 January 2023).
- Generalitat de Catalunya. DECRETO 32/2009, de 24 de Febrero, Sobre la Valorización de Escorias SiderúrgicasGeneralitat de Catalunya: Barcelona, Spain, 2003; Available online: https://vlex.es/vid/valorizacion-escorias-siderurgicas-81679082 (accessed on 25 January 2023).
- Decreto 34 Del País Vasco (2003), por el Que SE Regula la Valorización y Posterior Utilización de Escorias Procedentes de la Fabricación de Acero en Hornos de Arco Eléctrico, en El Ámbito de la Comunidad Autónoma Del País Vasco; Gobierno del Pais Vasco: Vitoria, Spain, 2003; (accessed on 25 January 2023).
- Kovler, K. Radiological constraints of using building materials and industrial by-products in construction. Constr. Build. Mater. 2009, 23, 246–253. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Pontikes, Y.; Leonardi, F.; Trevisi, R. New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour. Constr. Build. Mater. 2015, 82, 323–331. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation. 2013. Available online: https://eur-lex.europa.eu/eli/dir/2013/59/oj (accessed on 7 February 2023).
- Lépy, M.C.; Altzitzoglou, T.; Anagnostakis, M.J.; Capogni, M.; Ceccatelli, A.; De Felice, P.; Yang, M.J. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry—Part II (volume sources). Appl. Radiat. Isot. 2012, 70, 2112–2118. [Google Scholar] [CrossRef]
- ISO 11929-4:2022; Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Coverage Interval) for Measurements of Ionizing Radiation—Fundamentals and Application—Part 4: Guidelines to Applications. ISO: Geneva, Switzerland, 2022.
- Vidmar, T.; Aubineau-Laniece, I.; Anagnostakis, M.J.; Arnold, D.; Brettner-Messler, R.; Budjas, D.; Vidmar, G. An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Appl. Radiat. Isot. 2008, 66, 764–768. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. Report to the General Assembly, with Scientific Annexes. Annex B. Exposures from Natural Radiation Sources. 2000. Available online: http://www.unscear.org/unscear/en/publications/2000_1.html (accessed on 25 January 2023).
- European Commission. Radiation Protection 112—Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials, Directorate General Environment, Nuclear Safety and Civil Protection; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Organisation for Economic Co-Operation and Development (OECD); NEA Group of Experts. Exposure to Radiation from Natural Radioactivity in Building Materials; OECD Nuclear Energy Agency: Paris, France, 1979. [Google Scholar]
- Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E.F. Limestone filler cement in low w/c concrete: A rational use of energy. Cem. Concr. Res. 2003, 33, 865–871. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hadzima-Nyarko, M.; Zeyad, A.Z.; Al-Harazin, S.Z. Properties and durability of concrete with olive waste ash as a partial cement replacement. Adv. Concr. Cons. 2021, 11, 59–71. [Google Scholar] [CrossRef]
- Baloochi, H.; Marilda Barra, D.A. Waste paper ash as a hydraulic road binder: Hydration, mechanical and leaching considerations. J. Environ. Manag. 2022, 314, 115042. [Google Scholar] [CrossRef]
- Deqiang, Z.; Bingliu, Z.; Weiguo, S.; Miaomiao, W.; Yecheng, G.; Jiale, W.; Zheng, Z.; Jiaoqun, Z. High industrial solid waste road base course binder: Performance regulation, hydration characteristics and practical application. J. Clean. Prod. 2021, 313, 127879. [Google Scholar] [CrossRef]
- Leiva, C.; García Arenas, C.; Vilches, L.F.; Vale, J.; Gimenez, A.; Ballesteros, J.C.; Fernández-Pereira, C. Use of FGD gypsum in fire resistant panels. Waste Manag. 2010, 30, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Vafaei, M.; Allahverdi, A.; Dong, P.; Bassim, N. Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration. Constr. Build. Mater. 2018, 193, 363–372. [Google Scholar] [CrossRef]
- Ríos, J.D.; Arenas, C.; Cifuentes, H.; Vilches, L.F.; Leiva, C. Development of a paste for passive fire protection mainly composed of granulated blast furnace slag. Environ. Prog. Sustain. Energy 2020, 39, e13382. [Google Scholar] [CrossRef]
- Trevisi, R.; Risica, S.; D’Alessandro, M.; Paradiso, D.; Nuccetelli, C. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance. J. Environ. Radioact. 2012, 105, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.A.; Leiva, C.; Luna-Galiano, Y.; Villegas, R.; Fernández-Pereira, C. Physical, Mechanical and Radiological Characteristics of a Fly Ash Geopolymer Incorporating Titanium Dioxide Waste as Passive Fire Insulating Material in Steel Structures. Materials 2022, 15, 8493. [Google Scholar] [CrossRef] [PubMed]
- Leiva, C.; Arroyo-Torralvo, F.; Luna-Galiano, Y.; Villegas, R.; Vilches, L.F.; Fernández Pereira, C. Valorization of Bayer Red Mud in a Circular Economy Process: Valuable Metals Recovery and Further Brick Manufacture. Processes 2022, 10, 2367. [Google Scholar] [CrossRef]
- Leiva, C.; Arenas, C.; Cifuentes, H.; Vilches, L.F.; Rios, J.D. Radiological, leaching, and mechanical properties of co-combustion fly ash in cements. J. Hazard. Toxic Radioact. Waste 2017, 21, 04017011. [Google Scholar] [CrossRef]
CP | SC | E | OR | |
---|---|---|---|---|
SiO2 (%) | 13.8 | 0.01 | 0.6 | 26.8 |
Al2O3 (%) | 3.5 | 0.04 | 0.07 | 6.8 |
Fe2O3(%) | 2.3 | - | 0.6 | 5.2 |
MnO (%) | 0.1 | 0.04 | - | 5.6 |
MgO (%) | 0.7 | - | 0.4 | 5.1 |
CaO (%) | 59.3 | 54.0 | 62.4 | 16.4 |
Na2O (%) | 0.1 | 0.5 | - | 1.5 |
K2O (%) | 0.5 | - | 0.2 | 22.5 |
TiO2 (%) | 0.2 | - | - | - |
P2O5 (%) | 0.1 | 0.1 | - | - |
SO3 (%) | 1.7 | 0.3 | 1.3 | - |
LOI (%) | 15.5 | 43.2 | 34.4 | 9.4 |
Specific Density (g/cm3) | 3.19 | 2.63 | 2.64 | 2.73 |
Composition | Cement (%) | Waste (%) | Water/Solid Ratio |
---|---|---|---|
CP-100 | 100 | - | 0.35 |
CP-92.5-SC-7.5 | 92.5 | 7.5 | |
CP-20-SC-80 | 20 | 80 | |
CP-92.5-E-7.5 | 92.5 | 7.5 | |
CP-20-E-80 | 20 | 80 | |
CP-92.5-OR-7.5 | 92.5 | 7.5 | |
CP-20-OR-80 | 20 | 80 |
Composition | Density (kg/m3) | CS (MPa) |
---|---|---|
CP-100 | 1857 ± 22 | 42.6 ± 1.2 |
CP-92.5-SC-7.5 | 1813 ± 21 | 37.8 ± 1.3 |
CP-20-SC-80 | 1449 ± 17 | 2.5 ± 0.3 |
CP-92.5-E-7.5 | 1800 ± 25 | 33.2 ± 0.9 |
CP-20-E-80 | 1507 ± 18 | 2.6 ± 0.3 |
CP-92.5-OR-7.5 | 1846 ± 19 | 23.3 ± 0.8 |
CP-20-OR-80 | 1651 ± 11 | 1.4 ± 0.2 |
Leaching Limit (mg/kg, Dry Base) | Leaching Results (mg/k, Dry Base) | |||||||
1999/31/Ec [41] | Italian limits [43] | |||||||
Element | Hazard | Non-hazardous | Inert and Portuguese limit [42] | Cement | Scallop shell | Eggshell | Biomass fly ash | |
Zn | 200 | 50 | 4 | 0.03 | 1.1 | ≤0.03 | ≤0.03 | 0.02 |
Se | 7 | 0.5 | 0.1 | 0.1 | ≤0.1 | ≤0.1 | ≤0.1 | 0.4 |
Sb | 5 | 0.7 | 0.06 | - | ≤0.1 | ≤0.1 | ≤0.1 | 0.2 |
Pb | 50 | 10 | 0.5 | 0.5 | ≤0.1 | ≤0.1 | ≤0.1 | 9.2 |
Ni | 40 | 10 | 0.4 | 0.1 | ≤0.1 | ≤0.1 | ≤0.1 | 1.2 |
Mo | 30 | 10 | 0.5 | - | ≤0.1 | 0.2 | 0.7 | 1.7 |
Hg | 2 | 0.2 | 0.01 | 0.01 | ≤0.1 | <0.1 | <0.1 | <0.1 |
Cu | 100 | 50 | 2 | 0.5 | 0.5 | 0.1 | 0.8 | 6.5 |
Cr (total) | 70 | 10 | 0.5 | 0.5 | 0.6 | <0.2 | <0.2 | <0.2 |
Cd | 5 | 1 | 0.04 | 0.05 | <0.03 | <0.03 | <0.03 | <0.03 |
Ba | 300 | 100 | 20 | 10 | 0.4 | 0.9 | 1.2 | 0.3 |
As | 25 | 2 | 0.5 | 0.5 | ≤0.3 | ≤0.3 | ≤0.3 | 1.7 |
Specimens | 40K | 226Ra | 232Th |
---|---|---|---|
CP-100 | 192 ± 9 | 30.5 ± 1.3 | 23.9 ± 3.2 |
CP-20-E-80 | 46.4 ± 3 | 8.2 ± 0.5 | 5.3 ± 0.4 |
CP-20-SC-80 | 53.3 ± 5.6 | 7.5 ± 0.4 | 5.1 ± 0.5 |
CP-20-OR-80 | 3683 ± 154 | 18.8 ± 1.8 | 20.6 ± 1.5 |
CP-92.5-E-7.5 | 179 ± 9 | 27.6 ± 1.2 | 19.2 ± 1.2 |
CP-92.5-SC-7.5 | 176 ± 9 | 29.8 ± 1.2 | 20.4 ± 1.2 |
CP-92.5-OR-7.5 | 449 ± 19 | 27.6 ± 1.7 | 20.6 ± 1.7 |
Specimens | I | Raeq (Bq/kg) | D (nGy/h by Bq/kg) | E (mSv/y) |
---|---|---|---|---|
CP-100 | 0.29 ± 0.02 | 79.5 | 36.5 | 0.179 |
CP-20-E-80 | 0.07 ± 0.01 | 19.4 | 8.9 | 0.044 |
CP-20-SC-80 | 0.07 ± 0.01 | 18.9 | 8.8 | 0.043 |
CP-20-OR-80 | 1.39 ± 0.06 | 331.8 | 174.7 | 0.857 |
CP-92.5-E-7.5 | 0.25 ± 0.03 | 68.8 | 31.8 | 0.156 |
CP-92.5-SC-7.5 | 0.26 ± 0.03 | 72.5 | 33.4 | 0.164 |
CP-92.5-OR-7.5 | 0.34 ± 0.04 | 91.6 | 43.9 | 0.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peceño, B.; Hurtado-Bermudez, S.; Alonso-Fariñas, B.; Villa-Alfageme, M.; Más, J.L.; Leiva, C. Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications. Appl. Sci. 2023, 13, 1644. https://doi.org/10.3390/app13031644
Peceño B, Hurtado-Bermudez S, Alonso-Fariñas B, Villa-Alfageme M, Más JL, Leiva C. Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications. Applied Sciences. 2023; 13(3):1644. https://doi.org/10.3390/app13031644
Chicago/Turabian StylePeceño, B., S. Hurtado-Bermudez, B. Alonso-Fariñas, M. Villa-Alfageme, J. L. Más, and C. Leiva. 2023. "Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications" Applied Sciences 13, no. 3: 1644. https://doi.org/10.3390/app13031644
APA StylePeceño, B., Hurtado-Bermudez, S., Alonso-Fariñas, B., Villa-Alfageme, M., Más, J. L., & Leiva, C. (2023). Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications. Applied Sciences, 13(3), 1644. https://doi.org/10.3390/app13031644