Experimental Evaluation of the Influence of the Diameter of the Outlet Nozzle Bore of a Gas Injector on Its Flow Characteristic
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Research Equipment
2.3. Research Method
3. Results
3.1. AC W01-4 Injector
3.2. Barracuda 115 Injector
3.3. Matrix HS 211.20. Injector
4. Discussion
- Oscilloscope RIGOL MSO4014 (bandwidth—100 MHz; real time sample rate—up to 4 GSa/s; vertical resolution—8 bit; frequency—1 kHz);
- Voltage meter RIGOL RP1500A (bandwidth ~150 MHz; damping factor—10:1; maximum input voltage—CAT II 300V AC);
- Pressure sensor MPXH6400A (response time < 1 ms; range (20…400) kPa; output signal (0…5) V; accuracy 0.25%).
5. Conclusions
- There are discrepancies in the flow characteristics of the tested injectors at the same diameters of the outlet nozzle bores;
- Flow characteristics can be successfully fitted by a second-degree polynomial obtaining high-quality values.
- Highest volumetric flow rate values were obtained for the Matrix HS 211.20 injector; on average, it was 19.6% higher than the Barracuda 115 injector and 35.8% higher than the AC-W01-4 injector;
- Shortest opening time (calculated from the beginning of the control pulse) was obtained for the Matrix HS 211.20 injector and was 1.54 ms; the Barracuda 115 injector`s time was longer by 29.3% (2.18 ms), while the AC W01-4 injector’s time was longer by 36.6% (2.45 ms);
- The closing times of the tested injectors (calculated from the control pulse fade) were very similar (1.64…1.88) ms;
- Injector nozzle outlet pressure waveforms showed lower values for the Matrix HS 211.20 injector, which translated into lower average cycle pressure; the AC W01-4 injector’s pressure was 1.8% higher, and the Barracuda 115 injector’s one was 9.94% higher;
- Studies of opening and closing times and nozzle outlet pressure waveforms allowed an indirect explanation of the differences in volumetric flow rate of the tested injectors when using nozzles with the same bore diameter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
AMFA | Alternative Motor Fuels Act |
CAFÉ | Corporate Average Fuel Economy |
CAI | Controlled Auto-Ignition |
CARB-CAR | California Air Resources Board and validated by the Climate Action Reserve |
CNG | Compressed Natural Gas |
CO2 | Carbon dioxide |
GHGs | Greenhouse Gases |
H2 | Hydrogen |
HCCI | Homogeneous Charge Compression Ignition |
LNG | Liquefied Natural Gas |
LPG | Liquefied Petroleum Gas |
NEDC | New European Driving Cycle |
PWM | Pulse-Width Modulation signal |
RCCI | Reactivity Controlled Compression Ignition |
RDE | Real Driving Emissions test |
WLTC | Worldwide Harmonized Light vehicles Test Cycle |
References
- García, A.; Monsalve-Serrano, J.; Villalta, D.; Guzmán-Mendoza, M. Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion. Fuel 2020, 287, 119548. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J. Trends in Automotive Emission Legislation: Impact on LD Engine Development, Fuels, Lubricants and Test Methods: A Global View, with a Focus on WLTP and RDE Regulations. Emiss. Control Sci. Technol. 2019, 5, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Toumasatos, Z.; Kontses, A.; Doulgeris, S.; Samaras, Z.; Ntziachristos, L. Particle emissions measurements on CNG vehicles focusing on Sub-23nm. Aerosol Sci. Technol. 2021, 55, 182–193. [Google Scholar] [CrossRef]
- Raslavičius, L.; Keršys, A.; Mockus, S.; Keršiene, N.; Starevičius, M. Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport. Renew. Sustain. Energy Rev. 2014, 32, 513–525. [Google Scholar] [CrossRef]
- Saiteja, P.; Ashok, B. A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels. Fuel 2021, 285, 119202. [Google Scholar] [CrossRef]
- Mikulski, M.; Bekdemir, C. Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine—A simulation study. Appl. Energy 2017, 191, 689–708. [Google Scholar] [CrossRef]
- Hunicz, J.; Kordos, P. An experimental study of fuel injection strategies in CAI gasoline engine. Exp. Therm. Fluid Sci. 2011, 35, 243–252. [Google Scholar] [CrossRef]
- Caban, J. The investigation of eco-driving possibilities in passenger car used in urban traffic. Proc. Transp. Res. Procedia 2021, 55, 212–219. [Google Scholar] [CrossRef]
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 125. [Google Scholar] [CrossRef]
- Liu, Y.; Helfand, G.E. The Alternative Motor Fuels Act, alternative-fuel vehicles, and greenhouse gas emissions. Transp. Res. Part A: Policy Pract. 2009, 43, 755–764. [Google Scholar] [CrossRef]
- Marino, B.D.V.; Mincheva, M.; Doucett, A. California air resources board forest carbon protocol invalidates offsets. PeerJ 2019, 2019, e7606. [Google Scholar] [CrossRef]
- Yang, C.; Zha, M.; Wang, W.; Liu, K.; Xiang, C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intell. Transp. Syst. 2020, 14, 702–711. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid electric vehicles and their challenges: A review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Zarma, T.A.; Galadima, A.A.; Aminu, M.A. Review of Motors for Electrical Vehicles. J. Sci. Res. Rep. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, Z.A.; Alam, M.; Rafat, Y.; Chabaan, R.C.; Khan, I.; Bharadwaj, A. A Bibliographical Review of Electrical Vehicles (xEVs) Standards. SAE Int. J. Altern. Powertrains 2018, 7, 63–98. [Google Scholar] [CrossRef]
- Sun, Y.; Anwar, M.; Hassan, N.M.S.; Spiryagin, M.; Cole, C. A review of hydrogen technologies and engineering solutions for railway vehicle design and operations. Railw. Eng. Sci. 2021, 29, 212–232. [Google Scholar] [CrossRef]
- Popa, M.E.; Segers, A.J.; Denier van der Gon, H.A.C.; Krol, M.C.; Visschedijk, A.J.H.; Schaap, M.; Röckmann, T. Impact of a future H2 transportation on atmospheric pollution in Europe. Atmos. Environ. 2015, 113, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Lu, Y.; Roskilly, A.P.; Yu, X. A review of compressed air energy systems in vehicle transport. Energy Strategy Rev. 2021, 33, 100583. [Google Scholar] [CrossRef]
- Korbut, M.; Szpica, D. A Review of Compressed Air Engine in the Vehicle Propulsion System. Acta Mech. Autom. 2021, 15, 215–226. [Google Scholar] [CrossRef]
- Rayapureddy, S.M.; Matijošius, J.; Rimkus, A.; Caban, J.; Słowik, T. Comparative Study of Combustion, Performance and Emission Characteristics of Hydrotreated Vegetable Oil–Biobutanol Fuel Blends and Diesel Fuel on a CI Engine. Sustainability 2022, 14, 7324. [Google Scholar] [CrossRef]
- Masi, M. Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas). Energy 2012, 41, 252–260. [Google Scholar] [CrossRef]
- Erkus, B.; Sürmen, A.; Karamangil, M.I. A comparative study of carburation and injection fuel supply methods in an LPG-fuelled SI engine. Fuel 2013, 107, 511–517. [Google Scholar] [CrossRef]
- Frick, M.; Axhausen, K.W.; Carle, G.; Wokaun, A. Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies. Transp. Res. Part D Transp. Environ. 2007, 12, 10–22. [Google Scholar] [CrossRef]
- Aslam, M.U.; Masjuki, H.H.; Kalam, M.A.; Amalina, M.A. A Comparative Evaluation of the Performance and Emissions of a Retrofitted Spark Ignition Car Engine. J. Energy Environ. 2005, 4, 97–110. [Google Scholar]
- Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Appl. Energy 2010, 87, 2005–2013. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Badra, J.A.; Roberts, W.L.; Fang, T. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures. Fuel 2018, 223, 294–311. [Google Scholar] [CrossRef]
- Mitukiewicz, G.; Dychto, R.; Leyko, J. Relationship between LPG fuel and gasoline injection duration for gasoline direct injection engines. Fuel 2015, 153, 526–534. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, Y.J.; Lee, K.H.; Lee, K.S. Experimental approaches to investigating liquefied LPG spray characteristics. At. Sprays 2010, 20, 553–564. [Google Scholar] [CrossRef]
- AC, S.A. STAG 500 DIS—Dual Injection System. Available online: https://autogasecologico.com/wp-content/uploads/2020/11/STAG-500-DIS.pdf (accessed on 20 December 2022).
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of the use of Liquefied Petroleum Gas (LPG) systems in woodchippers powered by small engines on exhaust emissions and operating costs. Energies 2020, 13, 5773. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) fuel systems in small engine wood chippers on exhaust emissions and fuel consumption. Energies 2020, 13, 6709. [Google Scholar] [CrossRef]
- Aleiferis, P.G.; Serras-Pereira, J.; Augoye, A.; Davies, T.J.; Cracknell, R.F.; Richardson, D. Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines. Int. J. Heat Mass Transf. 2010, 53, 4588–4606. [Google Scholar] [CrossRef] [Green Version]
- Jang, C.; Kim, S.; Choi, S. An experimental and analytical study of the spray characteristics of an intermittent air-assisted fuel injector. At. Sprays 2000, 10, 199–217. [Google Scholar] [CrossRef]
- Panão, M.R.O.; Moreira, A.L.N. Flow characteristics of spray impingement in PFI injection systems. Exp. Fluids 2005, 39, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Kakuhou, A.; Urushihara, T.; Itoh, T.; Takagi, Y. Characteristics of mixture formation in a direct injection SI engine with optimized in-cylinder swirl air motion. J. Engines 1999, 108, 550–558. [Google Scholar] [CrossRef]
- Leach, B.; Zhao, H.; Li, Y.; Ma, T. Two-phase fuel distribution measurements in a gasoline direct injection engine with an air-assisted injector using advanced optical diagnostics. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2007, 221, 663–673. [Google Scholar] [CrossRef]
- Cavicchi, A.; Postrioti, L. Simultaneous needle lift and injection rate measurement for GDI fuel injectors by laser Doppler vibrometry and Zeuch method. Fuel 2021, 285, 119021. [Google Scholar] [CrossRef]
- Sedarsky, D.; Idlahcen, S.; Rozé, C.; Blaisot, J.B. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery. Exp. Fluids 2013, 54, 1451. [Google Scholar] [CrossRef] [Green Version]
- Sforzo, B.A.; Tekawade, A.; Kastengren, A.L.; Fezzaa, K.; Ilavsky, J.; Powell, C.F.; Pei, Y.; Zhang, A.; Levy, R. X-Ray Characterization of Real Fuel Sprays for Gasoline Direct Injection. J. Energy Resour. Technol. Trans. ASME 2022, 144, 022303. [Google Scholar] [CrossRef]
- Ramírez, A.I.; Som, S.; Aggarwal, S.K.; Kastengren, A.L.; El-Hannouny, E.M.; Longman, D.E.; Powell, C.F. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector. Exp. Fluids 2009, 47, 119–134. [Google Scholar] [CrossRef]
- Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels. Int. J. Heat Fluid Flow 2013, 44, 662–683. [Google Scholar] [CrossRef]
- Aleiferis, P.G.; Van Romunde, Z.R. An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel 2013, 105, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Locke, R.J.; Hicks, Y.R.; Anderson, R.C.; Zaller, M.M. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors. Combust. Sci. Technol. 1998, 138, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Yang, X.; Jia, D.; Song, E.; Yao, C. Measurement and verification of transient injection flow rate of high pressure natural gas pulse injector. Flow Meas. Instrum. 2020, 76, 101831. [Google Scholar] [CrossRef]
- Walaszyk, A.; Busz, W. Application of optical method for the analysis delay between control injector coil and beginning of the fuel injection. Combust. Engines 2013, 154, 1038–1041. [Google Scholar]
- Crua, C.; Heikal, M.R.; Gold, M.R. Microscopic imaging of the initial stage of diesel spray formation. Fuel 2015, 157, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Duk, M.; Czarnigowski, J. The method for indirect identification gas injector opening delay time. Prz. Elektrotech. 2012, 88, 59–63. [Google Scholar]
- Szpica, D. Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors. Meas. J. Int. Meas. Confed. 2018, 118, 253–261. [Google Scholar] [CrossRef]
- Czarnigowski, J. Teoretyczno-Empiryczne Studium Modelowania Impulsowego Wtryskiwacza Gazu; Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2012; ISBN PL 978-83-63569-09-9. [Google Scholar]
- Safiullah; Chandra Ray, S.; Nishida, K.; McDonell, V.; Ogata, Y. Effects of full transient Injection Rate and Initial Spray Trajectory Angle profiles on the CFD simulation of evaporating diesel sprays- comparison between singlehole and multi hole injectors. Energy 2023, 263, 125796. [Google Scholar] [CrossRef]
- Zhang, Y.; Nishida, K.; Yoshizaki, T. Quantitative Measurement of Droplets and Vapor Concentration Distributions in Diesel Sprays by Processing UV and Visible Images; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Lefebvre, A.H.; Mcdonell, V.G. Atomization and Sprays, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498736268. [Google Scholar]
- Ambrozik, A.; Kurczyński, D. Analysis of fast-changing quantities in the AD3.152 UR engine running of mineral fuel, plant fuel and their blends. Motrol 2008, 10, 11–22. [Google Scholar]
- Szpica, D.; Czaban, J. Operational assessment of selected gasoline and LPG vapour injector dosage regularity. Mechanika 2014, 20, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.C.; Lee, C.H. A comparative study of the measurement of the fuel injection rate of a diesel piezo injector with a scale and a positive displacement flow meter. ARPN J. Eng. Appl. Sci. 2021, 16, 2668–2673. [Google Scholar]
- Hung, D.L.S.; Harrington, D.L.; Gandhi, A.H.; Markle, L.E.; Parrish, S.E.; Shakal, J.S.; Sayar, H.; Cummings, S.D.; Kramer, J.L. Gasoline fuel injector spray measurement and characterization—A new SAE J2715 recommended practice. SAE Int. J. Fuels Lubr. 2009, 1, 534–548. [Google Scholar] [CrossRef]
- AC S.A. Instrukcja Obsługi. Listwa Wtryskowa AC W01 i AC W01 BFC. Available online: https://www.ac.com.pl/pl-centrum-pobran-schematy-listwy-wtryskowe (accessed on 20 December 2022).
- Alex Sp. z o.o. Barracuda LPG/SNG Injector. Available online: https://autogas-alex.com/wp-content/uploads/2019/07/Barracuda-PL.pdf (accessed on 20 December 2022).
- MATRIX S.p.A. Matrix Gas Injectors HS Series—CNG & LPG. Available online: http://www.matrix.to.it/pdf/hslight.pdf (accessed on 20 December 2022).
- Szpica, D. Investigating fuel dosage non-repeatability of low-pressure gas-phase injectors. Flow Meas. Instrum. 2018, 59, 147–156. [Google Scholar] [CrossRef]
- Szpica, D. Fuel dosage irregularity of LPG pulse vapor injectors at different stages of wear. Mechanika 2016, 22, 44–50. [Google Scholar] [CrossRef]
- Szpica, D.; Dziewiątkowski, M. Analysis of selected functional parameters of the gas supply system during NEDC and WLTC cycles. In Transport Means, Proceedings of the International Conference, Kaunas, Lithuania, 30 September–2 October 2020; Kaunas University of Technology: Kaunas, Lithuania, 2020. [Google Scholar]
- Beik, Y.; Dziewiątkowski, M.; Szpica, D. Exhaust emissions of an engine fuelled by petrol and Liquefied Petroleum Gas with control algorithm adjustment. SAE Int. J. Engines 2020, 13, 739–759. [Google Scholar] [CrossRef]
- Carey, V.J.; Wang, Y.-G. Mixed-Effects Models in S and S-Plus. J. Am. Stat. Assoc. 2001, 96, 1135–1136. [Google Scholar] [CrossRef]
- Yang, W.Y.; Cao, W.; Chung, T.-S.; Morris, J. Applied Numerical Methods Using MATLAB®; Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 9780471698333. [Google Scholar]
- Kass, R.E.; Bates, D.M.; Watts, D.G.; Seber, G.A.F.; Wild, C.J. Nonlinear Regression Analysis and Its Applications. J. Am. Stat. Assoc. 1990, 85, 594. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Yan, L.; Han, Z.; Gerling, D. Online detection of inverter voltage error based on the voltage oversampling measurement and sigmoidal function model. IEEE Trans. Power Electron. 2022, 37, 303–312. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, R.; Jiang, Z. Nonlinear dynamical model of an automotive dual mass flywheel. Adv. Mech. Eng. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Alex, Sp. z o.o. Tabela Przepływów Statycznych Względem Średnicy Dyszy Wtryskiwaczy RAIL-001, FLIPPER, Barracuda. Available online: https://autogas-alex.com/wp-content/uploads/2020/12/tabela-przeplywow-statycznych-względem-średnicy-dyszy.pdf (accessed on 20 December 2022).
- Szpica, D.; Borawski, A.; Mieczkowski, G.; Kusznier, M.; Awad, M.M.; Sadik, A.M.; Sallah, M. Evaluation of the influence of the supply pressure on functional parameters of the impulse low-pressure gas-phase injector. Acta Mech. Autom. 2020, 14, 180–185. [Google Scholar] [CrossRef]
Parameter | AC W01-4 | Barracuda 115 | Matrix HS 211.20 |
---|---|---|---|
Type of injector | plunger, cross flow | plunger, longitudinal flow | flap |
Max. flow at continuous opening | 125 LN/min | 115 LN/min | 95 LN/min |
Max. performance | 39 kW | 33 kW | 30 kW |
Coil resistance | 2 Ω | 1.9 Ω | 2 Ω |
Opening time | 2.3 ms | 1.9 ms | 1.0 ms |
Closing time | 1.4 ms | 1.2 ms | 1.0 ms |
Max. working pressure | 4.5 × 105 Pa | 4.5 × 105 Pa | 3.0 × 105 Pa |
Operating temperature | (−20… + 120) + 273.15 K | (−20… + 120) + 273.15 K | (−20… + 120) + 273.15 K |
Parameter | Measurement Device | Response Time | Range | Output Signal | Accuracy |
---|---|---|---|---|---|
Pressure | MPXH6400A | <1 ms | (20…400) kPa | (0…5) V | 0.25% |
Temperature | 1-TTP002-K-1,5-150-M10x1 and TS-2000-SO-2 | <0.25 s | (−200…+1350) +273.15 K | (0…10) V | (±1.5)/0.2% |
Flow meter | BRONKHORST F-113AC-M50-ABD-00-V | <2 s | (0…300) LN/min | (0…10) V | 0.5% |
Record | DAQ-6024E measurement card (12-bit resolution) and the LabVIEW software bandwidth |
Parameter\Diameter | 1.5 mm | 1.7 mm | 1.9 mm | 2.1 mm | 2.3 mm | 2.5 mm | 2.7 mm | 2.9 mm | 3.1 mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.144 | 2.855 | 3.312 | 4.034 | 4.759 | 4.995 | 5.193 | 5.301 | 5.310 | |||||||||
Variance | 0.016 | 0.015 | 0.016 | 0.014 | 0.022 | 0.014 | 0.021 | 0.023 | 0.017 | |||||||||
Standard deviation | 0.126 | 0.121 | 0.124 | 0.119 | 0.149 | 0.120 | 0.145 | 0.150 | 0.132 | |||||||||
Asymmetry factor | 0.049 | −0.298 | 0.081 | −0.409 | 0.142 | −0.047 | −0.134 | −0.231 | 0.041 | |||||||||
Kurtosis | 2.269 | 3.109 | 2.313 | 2.589 | 2.196 | 1.798 | 2.574 | 2.277 | 1.934 | |||||||||
Max value | 2.344 | 3.076 | 3.516 | 4.248 | 5.127 | 5.273 | 5.420 | 5.566 | 5.566 | |||||||||
Min value | 1.904 | 2.490 | 3.076 | 3.809 | 4.541 | 4.834 | 4.834 | 4.981 | 5.127 | |||||||||
Median | 2.121 | 2.832 | 3.289 | 4.012 | 4.731 | 4.973 | 5.166 | 5.282 | 5.276 | |||||||||
At pressure ×105 Pa | 0.995 | +0.012 | 1.027 | +0.016 | 0.980 | +0.016 | 1.016 | +0.035 | 0.995 | +0.032 | 1.018 | +0.017 | 1.003 | +0.032 | 1.008 | +0.035 | 1.019 | +0.027 |
−0.015 | −0.019 | −0.019 | −0.036 | −0.031 | −0.034 | −0.034 | −0.032 | −0.027 | ||||||||||
At temperature +273.15 K | 22.155 | +0.639 | 22.902 | +0.575 | 22.391 | +0.694 | 22.815 | +0.564 | 22.404 | +0.682 | 22.327 | +0.564 | 20.945 | +0.676 | 22.565 | +0.619 | 21.910 | +0.492 |
−0.436 | −0.499 | −0.673 | −0.608 | −0.587 | −0.510 | −0.593 | −0.455 | −0.582 |
Parameter\Diameter | 1.5 mm | 1.7 mm | 1.9 mm | 2.1 mm | 2.3 mm | 2.5 mm | 2.7 mm | 2.9 mm | 3.1 mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.371 | 3.043 | 3.915 | 4.261 | 4.953 | 5.563 | 6.004 | 6.363 | 6.572 | |||||||||
Variance | 0.019 | 0.016 | 0.015 | 0.021 | 0.018 | 0.019 | 0.017 | 0.015 | 0.018 | |||||||||
Standard deviation | 0.136 | 0.128 | 0.123 | 0.144 | 0.134 | 0.136 | 0.131 | 0.121 | 0.133 | |||||||||
Asymmetry factor | 0.288 | −0.128 | −0.218 | −0.095 | −0.320 | −0.238 | −0.083 | 0.269 | −0.233 | |||||||||
Kurtosis | 2.184 | 2.218 | 2.478 | 2.194 | 3.151 | 2.188 | 1.990 | 2.545 | 2.089 | |||||||||
Max value | 2.637 | 3.223 | 4.102 | 4.541 | 5.273 | 5.859 | 6.299 | 6.592 | 6.738 | |||||||||
Min value | 2.197 | 2.783 | 3.662 | 3.955 | 4.541 | 5.273 | 5.713 | 6.152 | 6.299 | |||||||||
Median | 2.3459 | 3.0195 | 3.8919 | 4.2341 | 4.9281 | 5.5375 | 5.9797 | 6.3404 | 6.5468 | |||||||||
At pressure ×105 Pa | 1.000 | +0.015 | 1.002 | +0.009 | 1.005 | +0.018 | 0.987 | +0.013 | 1.009 | +0.014 | 0.994 | +0.021 | 0.997 | +0.015 | 0.995 | +0.047 | 0.991 | +0.036 |
−0.012 | −0.015 | −0.013 | −0.030 | −0.021 | −0.025 | −0.025 | −0.046 | −0.042 | ||||||||||
At temperature +273.15 K | 22.081 | +0.712 | 22.242 | +0.551 | 22.744 | +0.537 | 22.312 | +0.481 | 22.086 | +0.707 | 21.720 | +0.585 | 21.548 | +0.562 | 21.172 | +0.547 | 21.466 | +0.546 |
−0.656 | −0.524 | −0.537 | −0.496 | −0.563 | −0.490 | −0.610 | −0.625 | −0.529 |
Parameter\Diameter | 1.5 mm | 1.7 mm | 1.9 mm | 2.1 mm | 2.3 mm | 2.5 mm | 2.7 mm | 2.9 mm | 3.1 mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 3.100 | 3.929 | 4.583 | 5.350 | 6.321 | 6.597 | 7.028 | 7.236 | 7.341 | |||||||||
Variance | 0.021 | 0.016 | 0.013 | 0.019 | 0.022 | 0.021 | 0.020 | 0.020 | 0.016 | |||||||||
Standard deviation | 0.145 | 0.125 | 0.115 | 0.138 | 0.148 | 0.145 | 0.142 | 0.141 | 0.128 | |||||||||
Asymmetry factor | −0.329 | −0.397 | 0.249 | −0.302 | −0.079 | 0.164 | −0.203 | −0.014 | −0.450 | |||||||||
Kurtosis | 2.421 | 2.604 | 2.723 | 2.546 | 2.276 | 2.470 | 2.286 | 2.377 | 2.556 | |||||||||
Max value | 3.369 | 4.102 | 4.834 | 5.566 | 6.592 | 6.885 | 7.324 | 7.471 | 7.617 | |||||||||
Min value | 2.783 | 3.662 | 4.395 | 4.981 | 6.006 | 6.299 | 6.738 | 6.885 | 7.031 | |||||||||
Median | 3.073 | 3.906 | 4.562 | 5.325 | 6.293 | 6.570 | 7.001 | 7.210 | 7.317 | |||||||||
At pressure ×105 Pa | 1.007 | +0.016 | 1.012 | +0.015 | 0.997 | +0.026 | 0.989 | +0.026 | 0.999 | +0.039 | 0.994 | +0.045 | 0.997 | +0.034 | 0.997 | +0.030 | 0.980 | +0.032 |
−0.027 | −0.020 | −0.033 | −0.044 | −0.039 | −0.041 | −0.036 | −0.036 | −0.046 | ||||||||||
At temperature +273.15 K | 22.101 | +0.497 | 21.743 | +0.561 | 21.658 | +0.647 | 21.594 | +0.613 | 21.465 | +0.645 | 21.757 | +0.646 | 21.534 | +0.673 | 21.619 | +0.784 | 21.497 | +0.515 |
−0.577 | −0.513 | −0.622 | −0.657 | −0.625 | −0.624 | −0.695 | −0.681 | −0.559 |
Parameter | AC W01-4 | Barracuda 115 | Matrix HS 211.20 | |||
---|---|---|---|---|---|---|
Manuf. | Measur. | Manuf. | Measure. | Manuf. | Measur. | |
Opening time | 2.30 ms | 2.43 ms | 1.90 ms | 2.18 ms | 1.00 ms | 1.54 ms |
Closing time | 1.40 ms | 1.88 ms | 1.20 ms | 1.68 ms | 1.00 ms | 1.64 ms |
Cycle mean pressure | 1.911 × 104 Pa | 2.089 × 104 Pa | 1.878 × 104 Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpica, D.; Toczko, B.; Borawski, A.; Mieczkowski, G. Experimental Evaluation of the Influence of the Diameter of the Outlet Nozzle Bore of a Gas Injector on Its Flow Characteristic. Appl. Sci. 2023, 13, 1700. https://doi.org/10.3390/app13031700
Szpica D, Toczko B, Borawski A, Mieczkowski G. Experimental Evaluation of the Influence of the Diameter of the Outlet Nozzle Bore of a Gas Injector on Its Flow Characteristic. Applied Sciences. 2023; 13(3):1700. https://doi.org/10.3390/app13031700
Chicago/Turabian StyleSzpica, Dariusz, Bogusław Toczko, Andrzej Borawski, and Grzegorz Mieczkowski. 2023. "Experimental Evaluation of the Influence of the Diameter of the Outlet Nozzle Bore of a Gas Injector on Its Flow Characteristic" Applied Sciences 13, no. 3: 1700. https://doi.org/10.3390/app13031700
APA StyleSzpica, D., Toczko, B., Borawski, A., & Mieczkowski, G. (2023). Experimental Evaluation of the Influence of the Diameter of the Outlet Nozzle Bore of a Gas Injector on Its Flow Characteristic. Applied Sciences, 13(3), 1700. https://doi.org/10.3390/app13031700