Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Superhydrophobic/Superhydrophilic Coatings
- a.
- Sol–gel preparation
- b.
- Formulation preparation
- c.
- Deposition procedure
- d.
- Characterization methods
3. Results and Discussion
3.1. Characterization of Raw: Raw Material
3.2. The Effects of Nanoparticle Nature on WCA and Transmittance with and without Thermal Curing
3.3. The Effects Chemical Composition on WCA and Transmittance
3.4. The Effects of the f-SiO2 Concentration on WCA and Transmittance
3.5. The Effect of Spraying Parameters
- a.
- Distance between the nozzle and substrate
- b.
- Shaping air pressure
- c.
- Area spacing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G.; Ciminelli, C. Solar Energy in Space Applications: Review and Technology Perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Sharma, B.; Sachithanandam, S.; Taahir, M.; Bintang, S.; Muhammad Aulia, R.S.; Haryanto Sinaga, D.; Sugiartha, N.; Ardana, I.G.N.; Sugina, I.M.; Widiantara, I.B.G.; et al. Preliminary design and test of a water spray solar panel cleaning system You may also like Effect of Nanosilica and Multiwalled Carbon Nanotubes on the Mechanical and Impact Performance of Unidirectional Kevlar/Epoxy Based Composites The effect of reflector application for solar panel output improvement Preliminary design and test of a water spray solar panel cleaning system. J. Phys. Conf. Ser. 2020, 1450, 12108. [Google Scholar]
- Gupta, V.; Sharma, M.; Pachauri, R.K.; Dinesh Babu, K.N. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 2019, 191, 596–622. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.H.I.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, C.; Diamanti, M.V.; Lu, H.; Zheng, C. Comparison of Dust Deposition Reduction Performance by Super-Hydrophobic and Super-Hydrophilic Coatings for Solar PV Cells. Coatings 2022, 12, 502. [Google Scholar] [CrossRef]
- Zorrilla-Casanova, J.; Piliougine, M.; Carretero, J.; Bernaola-Galván, P.; Carpena, P.; Mora-Lõpez, L.; Sidrach-De-Cardona, M. Losses produced by soiling in the incoming radiation to photovoltaic modules. Prog. Photovoltaics Res. Appl. 2013, 21, 790–796. [Google Scholar] [CrossRef]
- Castro-Hoyos, A.M.; Rojas Manzano, M.A.; Maury-Ramírez, A. Challenges and Opportunities of Using Titanium Dioxide Photocatalysis on Cement-Based Materials. Coatings 2022, 12, 968. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Zhang, F.; Zhao, Y.; Li, L.; Yang, X.; Zhang, F. Research Progress of Self-Cleaning, Anti-Icing, and Aging Test Technology of Composite Insulators. Coatings 2022, 12, 1224. [Google Scholar] [CrossRef]
- Kurbanova, A.; Myrzakhmetova, N.; Akimbayeva, N.; Kishibayev, K.; Nurbekova, M.; Kanagat, Y.; Tursynova, A.; Zhunussova, T.; Seralin, A.; Kudaibergenova, R.; et al. Superhydrophobic SiO2/Trimethylchlorosilane Coating for Self-Cleaning Application of Construction Materials. Coatings 2022, 12, 1422. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.; Zhang, H.; Liu, Y.; Wang, Y.; Liu, K.; Liang, H.; Ming, W. Recent Advances in Superhydrophobic and Antibacterial Coatings for Biomedical Materials. Coatings 2022, 12, 1469. [Google Scholar] [CrossRef]
- Syafiq, A.; Pandey, A.K.; Adzman, N.N.; Rahim, N.A. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol. Energy 2018, 162, 597–619. [Google Scholar] [CrossRef]
- Kawamoto, H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J. Electrostat. 2019, 98, 11–16. [Google Scholar] [CrossRef]
- Altıntaş, M.; Arslan, S. The Study of Dust Removal Using Electrostatic Cleaning System for Solar Panels. Sustainability 2021, 13, 9454. [Google Scholar] [CrossRef]
- Calle, C.I.; Buhler, C.R.; McFall, J.L.; Snyder, S.J. Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions. J. Electrostat. 2009, 67, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, H.; Shibata, T. Electrostatic cleaning system for removal of sand from solar panels. J. Electrostat. 2015, 73, 65–70. [Google Scholar] [CrossRef]
- Santosh Kumar, S.; Shankar, S.; Murthy, K. Solar Powered PV Panel Cleaning Robot. In Proceedings of the 5th IEEE Interna-tional Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), Bangalore, India, 12–13 November 2020; Volume 2020, pp. 169–172. [Google Scholar] [CrossRef]
- Parrott, B.; Carrasco Zanini, P.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Askar, K.; Phillips, B.M.; Fang, Y.; Choi, B.; Gozubenli, N.; Jiang, P.; Jiang, B. Self-assembled self-cleaning broadband anti-reflection coatings. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 439, 84–100. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, Q.; Zhu, X.; Cheng, L.; Bai, S.; Wang, Z.; Meng, L.; Qin, Y. A new kind of transparent and self-cleaning film for solar cells. Nanoscale 2016, 8, 17747–17751. [Google Scholar] [CrossRef]
- Ren, T.; He, J. Substrate-versatile approach to robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments. ACS Appl. Mater. Interfaces 2017, 9, 34367–34376. [Google Scholar] [CrossRef]
- Sutha, S.; Suresh, S.; Raj, B.; Ravi, K.R. Transparent alumina based superhydrophobic self–cleaning coatings for solar cell cover glass applications. Sol. Energy Mater. Sol. Cells 2017, 165, 128–137. [Google Scholar] [CrossRef]
- Adak, D.; Bhattacharyya, R.; Saha, H.; Maiti, P.S. Sol–gel processed silica based highly transparent self-cleaning coatings for solar glass covers. Mater. Today Proc. 2020, 33, 2429–2433. [Google Scholar] [CrossRef]
- Zhang, C.; Kalulu, M.; Sun, S.; Jiang, P.; Zhou, X.; Wei, Y.; Jiang, Y. Environmentally safe, durable and transparent superhydrophobic coating prepared by one-step spraying. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 147–155. [Google Scholar] [CrossRef]
- Crick, C.R.; Parkin, I.P. A single step route to superhydrophobic surfaces through aerosol assisted deposition of rough polymer surfaces: Duplicating the lotus effect. J. Mater. Chem. 2009, 19, 1074–1076. [Google Scholar] [CrossRef]
- Langlet, M.; Vautey, C.; Mazeas, N. Some aspects of the aerosol–gel process. Thin Solid Films 1997, 299, 25–32. [Google Scholar] [CrossRef]
- Alam, K.; Ali, S.; Saboor, A.; Salman, M.; Maoz; Humayun, M.; Sadiq, M.; Arif, M. Antireflection, Superhydrophilic Nano-Porous SiO2 Coating based on Aerosol Impact Spray Deposition Technique for Solar PV Module. Coatings 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Benti, N.E.; Aneseyee, A.B.; Asfaw, A.A.; Geffe, C.A.; Tiruye, G.A.; Mekonnen, Y.S. Estimation of global solar radiation using sunshine-based models in Ethiopia. Civ. Environ. Eng. 2022, 9. [Google Scholar] [CrossRef]
- Di, Y.; Qiu, J.; Wang, G.; Wang, H.; Lan, L.; Zheng, B. Exploring Contact Angle Hysteresis Behavior of Droplets on the Surface Microstructure. Langmuir 2021, 37, 7078–7086. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Han, J.; Yao, B. A numerical solution to the effects of surface roughness on water–coal contact angle. Sci. Rep. 2021, 11, 459. [Google Scholar] [CrossRef]
- Matouk, Z.; Rincón, R.; Torriss, B.; Mirzaei, A.; Margot, J.; Dorris, A.; Beck, S.; Berry, R.M.; Chaker, M. Functionalization of cellulose nanocrystal powder by non-thermal atmospheric-pressure plasmas. Cellulose 2021, 28, 6239–6252. [Google Scholar] [CrossRef]
- Matouk, Z.; Torriss, B.; Rincón, R.; Dorris, A.; Beck, S.; Berry, R.M.; Chaker, M. Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric –Pressure plasmas. Appl. Surf. Sci. 2020, 511, 145566. [Google Scholar] [CrossRef]
- Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J.S.; Garcia-Perez, M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon N. Y. 2016, 110, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Zakhvalinskii, V.; Piliuk, E.; Goncharov, I.; Simashkevich, A.; Sherban, D.; Bruc, L.; Curmei, N.; Rusu, M. Silicon carbide nanolayers as a solar cell constituent. Phys. Status Solidi Appl. Mater. Sci. 2015, 212, 184–188. [Google Scholar] [CrossRef]
- Gao, D.; Wijesundara, M.B.J.; Carraro, C.; Maboudian, R.; Howe, R.T. Characterization of residual strain in SiC films deposited using 1,3-disilabutane for MEMS application. J. Microlithogr. Microfabr. Microsystems 2003, 2, 259–264. [Google Scholar] [CrossRef]
- Kaur, A.; Chahal, P.; Hogan, T. Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron Device Lett. 2016, 37, 142–145. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhang, C.; Guo, X.P.; Zhang, G.; Liao, H.L.; Li, C.J.; Coddet, C. Effect of standoff distance on coating deposition characteristics in cold spraying. Mater. Des. 2008, 29, 297–304. [Google Scholar] [CrossRef]
- Żórawski, W.; Molak, R.; Mądry, J.; Sienicki, J.; Góral, A.; Makrenek, M.; Scendo, M.; Dobosz, R. Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance. Materials 2021, 14, 5492. [Google Scholar] [CrossRef]
- Cai, Z.; Deng, S.; Liao, H.; Zeng, C.; Montavon, G. The Effect of Spray Distance and Scanning Step on the Coating Thickness Uniformity in Cold Spray Process. J. Therm. Spray Technol. 2013, 23, 354–362. [Google Scholar] [CrossRef]
- Li, W.; Qian, L.; Song, S.; Zhong, X. Numerical Study on the Influence of Shaping Air Holes on Atomization Performance in Pneumatic Atomizers. Coatings 2019, 9, 410. [Google Scholar] [CrossRef]
Samples | %O | %C | %Si |
---|---|---|---|
sol–gel | 49.2 | 16.5 | 24.3 |
sol–gel + HNT | 44.7 | 25.6 | 29.7 |
sol–gel + SiO2 | 50.7 | 11 | 38.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlZadjali, S.; Matouk, Z.; AlShehhi, A.; Rajput, N.; Mohammedture, M.; Guttierrez, M. Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces. Appl. Sci. 2023, 13, 1707. https://doi.org/10.3390/app13031707
AlZadjali S, Matouk Z, AlShehhi A, Rajput N, Mohammedture M, Guttierrez M. Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces. Applied Sciences. 2023; 13(3):1707. https://doi.org/10.3390/app13031707
Chicago/Turabian StyleAlZadjali, Shroq, Zineb Matouk, Abdulla AlShehhi, Nitul Rajput, Meriam Mohammedture, and Monserrat Guttierrez. 2023. "Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces" Applied Sciences 13, no. 3: 1707. https://doi.org/10.3390/app13031707
APA StyleAlZadjali, S., Matouk, Z., AlShehhi, A., Rajput, N., Mohammedture, M., & Guttierrez, M. (2023). Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces. Applied Sciences, 13(3), 1707. https://doi.org/10.3390/app13031707