Robust Design of Deep Drawing Process through In-Line Feedback Control of the Draw-In
Abstract
:1. Introduction
2. Materials and Methods
2.1. FE Modeling
2.2. PID Modeling for Feedback Control on the Blank Holder Force
3. Results
3.1. Calibration of FE Model by Means of Experimental Tests
3.2. FE Analysis of BHF and p Parameters on the Quality of the Drawn Component
3.3. Influence of Noise Parameters on the Quality of the Drawn Component
3.4. Feedback Control of the Draw-in by Regulating the BHF
4. Conclusions
- Checking only the sensor that highlights the greatest deviation in the draw-in from the optimal one allows us to obtain a drawn component that falls within the imposed quality limits. After BHF adjustment, the percentage error between the measured draw-in and the optimal one decreases. This is observed both in the controlled and uncontrolled sensors.
- When the percentage error between the measured draw-in and the optimal one is high, the BHF adjustment becomes more difficult since more control steps are required to minimize the error. Therefore, a combination of the feedback control type and feed-forward control type will be required to estimate the friction coefficient value and identify the new optimal BHF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraft, M.; Bürgel, U. Novel concept for measurement of global blank draw-in when deep drawing outer skin automotive components. J. Phys. Conf. Ser. 2017, 896, 012034. [Google Scholar] [CrossRef]
- Swapna, D.; Srinivasa Rao, C.; Radhika, S. A review on deep drawing process. Int. J. Emerg. Res. Manag. Technol. 2018, 6, 146–149. [Google Scholar] [CrossRef]
- Dal Santo, P.; Germain, G.; Boude, S.; Giraud, E. Cold forming by stretching of aeronautic sheet metal parts. Int. J. Comput. Integr. Manuf. 2014, 27, 129–138. [Google Scholar] [CrossRef]
- Zein, H.; El-Sherbiny, M.; Abd-Rabou, M.; El Shazly, M. Effect of die design parameters on thinning of sheet metal in the deep drawing process. Am. J. Mech. Eng. 2013, 1, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qin, S.; Cao, L. Investigation of the effect of blank holder force distribution on deep drawing using developed blank holder divided into double rings. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 284. [Google Scholar] [CrossRef]
- Krishnan, N.; Cao, J. Estimation of optimal blank holder force trajectories in segmented binders using an ARMA model. J. Manuf. Sci. Eng. 2003, 125, 763–770. [Google Scholar] [CrossRef]
- Ahmetoglu, M.A.; Coremans, A.; Kinzel, G.L.; Altan, T. Improving Drawability by Using Variable Blank Holder Force and Pressure in Deep Drawing of Round and Non-Symmetric Parts; No. 930287; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- Palmieri, M.; Lorusso, V.; Tricarico, L. Robust optimization and Kriging metamodeling of deep-drawing process to obtain a regulation curve of blank holder force. Metals 2021, 11, 319. [Google Scholar] [CrossRef]
- E Palmieri, M.; Tricarico, L. Control of draw-in in the deep-drawing process by regulating the force on the blank holder. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1238, 012071. [Google Scholar] [CrossRef]
- Atul, S.T.; Babu, M.L. A review on effect of thinning, wrinkling and spring-back on deep drawing process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1011–1036. [Google Scholar] [CrossRef]
- Wiebenga, J.; Atzema, E.; An, Y.; Vegter, H.; Boogaard, A.V.D. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming. J. Mater. Process. Technol. 2014, 214, 238–252. [Google Scholar] [CrossRef]
- Fischer, P.; Harsch, D.; Heingärtner, J.; Renkci, Y.; Hora, P. Inline feedback control for deep drawing applications. IOP Conf. Ser. Mater. Sci. Eng. 2016, 159, 012006. [Google Scholar] [CrossRef] [Green Version]
- Merten, M.; Liebold, K.; Haufe, A. Robustness analysis with LS-OPT® and LS-DYNA® for sheet metal forming simulations. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1157, 012088. [Google Scholar] [CrossRef]
- Wiebenga, J.H. Robust Design and Optimization of Forming Processes. Ph.D. thesis, University of Twente Faculty of Engineering Technology, Enschede, The Netherlands, 2014. [Google Scholar]
- Kim, K.; Jeong, J.Y.; Yong, S.S. Process optimization of sheet metal forming using operating window. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 2009, 49057, 209–216. [Google Scholar]
- Fischer, P.; Heingärtner, J.; Renkci, Y.; Hora, P. Experiences with inline feedback control and data acquisition in deep drawing. Procedia Manuf. 2018, 15, 949–954. [Google Scholar] [CrossRef]
- Fischer, P.; Harsch, D.; Heingärtner, J.; Renkci, Y.; Hora, P. Implementation of feedback control in kitchen sink production. IOP Conf. Ser. Mater. Sci. Eng. 2018, 418, 012110. [Google Scholar] [CrossRef]
- Fischer, P.; Harsch, D.; Heingärtner, J.; Renkci, Y.; Hora, P. A knowledge-based control system for the robust manufacturing of deep drawn parts. Procedia Eng. 2017, 207, 42–47. [Google Scholar] [CrossRef]
- Available online: https://ahssinsights.org/news/vision-for-industry-4-0-in-sheet-metal-forming/ (accessed on 10 December 2022).
- Hardt, D.E.; Fenn, R.C. Real-time control of sheet stability during forming. J. Eng. Ind. 1993, 115, 299–308. [Google Scholar] [CrossRef]
- Endelt, B.; Nielsen, K.B.; Danckert, J. New framework for on-line feedback control of a deep-drawing operation. J. Mater. Process. Technol. 2006, 177, 426–429. [Google Scholar] [CrossRef]
- Endelt, B.; Tommerup, S.; Danckert, J. A novel feedback control system–Controlling the material flow in deep drawing using distributed blank-holder force. J. Mater. Process. Technol. 2013, 213, 36–50. [Google Scholar] [CrossRef]
- Lo, S.W.; Jeng, G.M. Monitoring the displacement of a blank in a deep drawing process by using a new embedded-type sensor. Int. J. Adv. Manuf. Technol. 1999, 15, 815–821. [Google Scholar] [CrossRef]
- Doege, E.; Seidel, H.-J.; Griesbach, B.; Yun, J.-W. Contactless on-line measurement of material flow for closed loop control of deep drawing. J. Mater. Process. Technol. 2002, 130, 95–99. [Google Scholar] [CrossRef]
- Doege, E.; Schmidt-Jürgensen, R.; Huinink, S.; Yun, J.-W. Development of an optical sensor for the measurement of the material flow in deep drawing processes. CIRP Ann. 2003, 52, 225–228. [Google Scholar] [CrossRef]
- Mahayotsanun, N.; Cao, J.; Peshkin, M. A Draw-In Sensor for Process Control and Optimization. AIP Conf. Proc. 2005, 778, 861–866. [Google Scholar]
- Kott, M.; Erz, C.; Heingärtner, J.; Groche, P. Controllability of Temperature Induced Friction Effects during Deep Drawing of Car Body Parts with High Drawing Depths in Series Production. Procedia Manuf. 2020, 47, 553–560. [Google Scholar] [CrossRef]
- Bäume, T.; Zorn, W.; Drossel, W.G.; Rupp, G. Iterative process control and sensor evaluation for deep drawing tools with integrated piezoelectric actuators. Manuf. Rev. 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Bäume, T.; Zorn, W.; Drossel, W.-G.; Rupp, G. Step by step control of a deep drawing process with piezo-electric actuators in serial operation. MATEC Web Conf. 2015, 21, 04008. [Google Scholar] [CrossRef] [Green Version]
- Brun, M.; Ghiotti, A.; Bruschi, S.; Filippi, S. Active control of blankholder in sheet metal stamping. Procedia CIRP 2021, 100, 151–156. [Google Scholar] [CrossRef]
- Available online: https://www.esb-group.com/en/products-din-en/cold-rolled-steel/ (accessed on 29 November 2022).
- Banabic, D.; Sester, M. Influence of material models on the accuracy of the sheet forming simulation. Mater. Manuf. Process. 2012, 27, 273–277. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar]
- Shen, H.; Li, S.; Chen, G. Quantitative analysis of surface deflections in the automobile exterior panel based on a curvature-deviation method. J. Mater. Process. Technol. 2012, 212, 1548–1556. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–765. [Google Scholar] [CrossRef]
- Waleed, E.-B. Automated Ziegler Nicholas PID Tuning. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/47836-automated-ziegler-nicholas-pid-tuning (accessed on 19 December 2022).
- Cao, J.; Boyce, M.C. Design and control of forming parameters using finite element analysis. Am. Soc. Mech. Eng. Aerosp. Div. (Publ.) AD 1994, 42, 265–285. [Google Scholar]
- Sunseri, M.; Cao, J.; Karafillis, A.P.; Boyce, M.C. Accommodation of springback error in channel forming using active binder force control: Numerical simulations and experiments. J. Eng. Mater. Technol. 1996, 118, 426–435. [Google Scholar] [CrossRef]
- Siegert, K.; Ziegler, M.; Wagner, S. Closed loop control of the friction force. Deep drawing process. J. Mater. Process. Technol. 1997, 71, 126–133. [Google Scholar] [CrossRef]
- Ziegler, M. Pulsating Blankholder Technology; No. 1999-01-3155; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Hsu, C.-W.; Ulsoy, A.G.; Demeri, M.Y. Development of process control in sheet metal forming. J. Mater. Process. Technol. 2002, 127, 361–368. [Google Scholar] [CrossRef]
- Lim, Y. MIMO Adaptive Process Control in Stamping Using Punch Force. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2010. [Google Scholar]
- Kleijnen, J.P.C. Kriging metamodeling in simulation: A review. Eur. J. Oper. Res. 2009, 192, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Zein, H.; El Sherbiny, M.; Abd-Rabou, M.; El Shazly, M. Thinning and spring back prediction of sheet metal in the deep drawing process. Mater. Des. 2014, 53, 797–808. [Google Scholar] [CrossRef]
- Bhaduri, A. Deep Drawing. Mechanical Properties and Working of Metals and Alloys; Springer: Singapore, 2018; pp. 693–719. [Google Scholar]
Parameters | Value |
---|---|
0.25 | |
C | 515.5 MPa |
0.00607 | |
413.1 MPa | |
146.5 MPa | |
4.47 |
Parameters | Value |
---|---|
1.86 | |
1.57 | |
2.46 | |
1.865 | |
Biax | 1 |
Noise Parameter | Nominal Value | Variability Range |
---|---|---|
, MPa | 145.91 | 131.32–160.50 |
, MPa | 285.50 | 256.96–314.06 |
1.86 | 1.49–2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tricarico, L.; Palmieri, M.E. Robust Design of Deep Drawing Process through In-Line Feedback Control of the Draw-In. Appl. Sci. 2023, 13, 1717. https://doi.org/10.3390/app13031717
Tricarico L, Palmieri ME. Robust Design of Deep Drawing Process through In-Line Feedback Control of the Draw-In. Applied Sciences. 2023; 13(3):1717. https://doi.org/10.3390/app13031717
Chicago/Turabian StyleTricarico, Luigi, and Maria Emanuela Palmieri. 2023. "Robust Design of Deep Drawing Process through In-Line Feedback Control of the Draw-In" Applied Sciences 13, no. 3: 1717. https://doi.org/10.3390/app13031717
APA StyleTricarico, L., & Palmieri, M. E. (2023). Robust Design of Deep Drawing Process through In-Line Feedback Control of the Draw-In. Applied Sciences, 13(3), 1717. https://doi.org/10.3390/app13031717