Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Finite Element Analysis
2.3. Machine Learning
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Komori, K. Simulation of deformation and temperature in caliber rolling: Effect of finite-element mesh in cross-section. J. Mater. Process. Technol. 2003, 143–144, 367–372. [Google Scholar] [CrossRef]
- Kimura, Y.; Inoue, T.; Yin, F.; Tsuzaki, K. Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel. Science 2008, 320, 1057–1060. [Google Scholar] [CrossRef]
- Inoue, T.; Yin, F.; Kimura, Y.; Tsuzaki, K.; Ochiai, S. Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling. Metall. Mater. Trans. A 2010, 41, 341–355. [Google Scholar] [CrossRef]
- Lee, T.; Park, C.H.; Lee, D.-L.; Lee, C.S. Enhancing tensile properties of ultrafine-grained medium-carbon steel utilizing fine carbides. Mater. Sci. Eng. A 2011, 528, 6558–6564. [Google Scholar] [CrossRef]
- Kimura, Y.; Inoue, T.; Akiyama, E. Warm tempforming effect on the hydrogen embrittlement of 1.8-GPa-class ultra-high-strength low-alloy steel. Mater. Sci. Eng. A 2017, 703, 503–512. [Google Scholar] [CrossRef]
- Hwang, J.K.; Kim, S.J. Effect of reduction in area per pass on strain distribution and microstructure during caliber rolling in twinning-induced plasticity steel. J. Iron Steel Res. Int. 2019, 27, 62–74. [Google Scholar] [CrossRef]
- Krállics, G.; Gubicza, J.; Bezi, Z.; Barkai, I. Manufacturing of ultrafine-grained titanium by caliber rolling in the laboratory and in industry. J. Mater. Process. Technol. 2014, 214, 1307–1315. [Google Scholar] [CrossRef]
- Babu, S.M.J.; Murty, S.V.S.N.; Prabhu, N.; Kashyap, B.P. An evidence of pseudo-elasticity in a caliber rolled Ti6Al4V alloy and its effect on tension-compression flow asymmetry. Mater. Sci. Eng. A 2019, 754, 650–658. [Google Scholar] [CrossRef]
- Topolski, K.; Garbacz, H. Manufacturing of nanostructured titanium Grade2 using caliber rolling. Mater. Sci. Eng. A 2019, 739, 277–288. [Google Scholar] [CrossRef]
- Lee, T.; Lee, S.; Kim, I.-S.; Moon, Y.H.; Kim, H.S.; Park, C.H. Breaking the limit of Young’s modulus in low-cost Ti–Nb–Zr alloy for biomedical implant applications. J. Alloys Compd. 2020, 828, 154401. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, H. Effect of Rolling Speed on Microstructural and Microtextural Evolution of Nb Tubes during Caliber-Rolling Process. Metals 2019, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Murty, S.V.S.N.; Narayanan, P.R. Microstructure and texture evolution in AZ31 magnesium alloy during caliber rolling at different temperatures. J. Magnes. Alloys 2017, 5, 340–347. [Google Scholar] [CrossRef]
- Lee, T.; Kwak, B.J.; Kong, T.; Lee, J.H.; Lee, S.W.; Park, S.H. Enhanced yield symmetry and strength-ductility balance of caliber-rolled Mg–6Zn-0.5Zr with ultrafine-grained structure and bulk dimension. J. Alloys Compd. 2019, 803, 434–441. [Google Scholar] [CrossRef]
- Liu, N.; Chen, L.; Fu, Y.; Zhang, Y.; Tan, T.; Yin, F.; Liang, C. Interfacial characteristic of multi-pass caliber-rolled Mg/Al compound castings. J. Mater. Process. Technol. 2019, 267, 196–204. [Google Scholar] [CrossRef]
- Somekawa, H.; Basha, D.A.; Singh, A. Change in dominant deformation mechanism of Mg alloy via grain boundary control. Mater. Sci. Eng. A 2019, 746, 162–166. [Google Scholar] [CrossRef]
- Kwak, B.J.; Park, S.H.; Moon, Y.H.; Lee, J.H.; Lee, T. Plastic anisotropy of multi-pass caliber-rolled Mg alloy with split texture distribution. Mater. Sci. Eng. A 2020, 788, 139496. [Google Scholar] [CrossRef]
- Kong, T.; Kwak, B.J.; Kim, J.; Lee, J.H.; Park, S.H.; Kim, J.H.; Moon, Y.H.; Yoon, H.S.; Lee, T. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing. J. Magnes. Alloys 2020, 8, 163–171. [Google Scholar] [CrossRef]
- Inoue, T.; Yin, F.; Kimura, Y. Strain distribution and microstructural evolution in multi-pass warm caliber rolling. Mater. Sci. Eng. A 2007, 466, 114–122. [Google Scholar] [CrossRef]
- Hwang, J.-K.; Yi, I.-C.; Son, I.-H.; Yoo, J.-Y.; Kim, B.; Zargaran, A.; Kim, N.J. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater. Sci. Eng. A 2015, 644, 41–52. [Google Scholar] [CrossRef]
- Kim, J.G.; Seol, J.B.; Park, J.M.; Sung, H.; Park, S.H.; Kim, H.S. Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels. Met. Mater. Int. 2021, 27, 2614–2622. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, E.S.; Park, S.; Park, J.M.; Seol, J.B.; Kim, H.S.; Lee, T.; Sung, H.; Kim, J.G. Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti–6Al–4V Alloy Manufactured by Direct Energy Deposition. Met. Mater. Int. 2022, 28, 197–204. [Google Scholar] [CrossRef]
- Lee, T.; Kwak, B.J.; Yu, J.; Lee, J.H.; Noh, Y.; Moon, Y.H. Deep-learning approach to predict a severe plastic anisotropy of caliber-rolled Mg alloy. Mater. Lett. 2020, 269, 127652. [Google Scholar] [CrossRef]
- Inoue, T.; Somekawa, H.; Mukai, T. Hardness Variation and Strain Distribution in Magnesium Alloy AZ31 Processed by Multi-pass Caliber Rolling. Adv. Eng. Mater. 2009, 11, 654–658. [Google Scholar] [CrossRef]
- Yu, J.; Lee, M.; Moon, Y.H.; Noh, Y.; Lee, T. Prediction of Electropulse-Induced Nonlinear Temperature Variation of Mg Alloy Based on Machine Learning. Korean J. Met. Mater. 2020, 58, 413–422. [Google Scholar] [CrossRef]
- Khalaj, O.; Ghobadi, M.; Zarezadeh, A.; Saebnoori, E.; Jirková, H.; Chocholaty, O.; Svoboda, J. Potential role of machine learning techniques for modeling the hardness of OPH steels. Mater. Today Commun. 2021, 26, 101806. [Google Scholar] [CrossRef]
- Sembiring, J.P.B.A.; Amanov, A.; Pyun, Y.S. Artificial neural network-based prediction model of residual stress and hardness of nickel-based alloys for UNSM parameters optimization. Mater. Today Commun. 2020, 25, 101391. [Google Scholar] [CrossRef]
- Kim, S.-H.; Bae, S.W.; Lee, S.W.; Moon, B.G.; Kim, H.S.; Kim, Y.M.; Yoon, J.; Park, S.H. Microstructural evolution and improvement in mechanical properties of extruded AZ31 alloy by combined addition of Ca and Y. Mater. Sci. Eng. A 2018, 725, 309–318. [Google Scholar] [CrossRef]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2018, 18, 1–52. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Hwang, J.-K. Effects of caliber rolling on microstructure and mechanical properties in twinning-induced plasticity (TWIP) steel. Mater. Sci. Eng. A 2018, 711, 156–164. [Google Scholar] [CrossRef]
- Lee, T.; Park, K.-T.T.; Lee, D.J.; Jeong, J.; Oh, S.H.; Kim, H.S.; Park, C.H.; Lee, C.S. Microstructural evolution and strain-hardening behavior of multi-pass caliber-rolled Ti-13Nb-13Zr. Mater. Sci. Eng. A 2015, 648, 359–366. [Google Scholar] [CrossRef]
Pass † | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
s(mm) | 5.30 | 4.91 | 4.56 | 4.17 | 3.89 | 3.50 | 3.29 | 3.04 | 2.79 |
r(%) | 0 | 13.6 | 26.6 | 37.7 | 46.4 | 56.8 | 61.8 | 67.5 | 72.4 |
εeq | 0 | 0.15 | 0.31 | 0.47 | 0.62 | 0.84 | 0.96 | 1.12 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Oh, S.J.; Baek, S.; Kim, J.; Lee, T. Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning. Appl. Sci. 2022, 12, 10646. https://doi.org/10.3390/app122010646
Yu J, Oh SJ, Baek S, Kim J, Lee T. Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning. Applied Sciences. 2022; 12(20):10646. https://doi.org/10.3390/app122010646
Chicago/Turabian StyleYu, Jinyeong, Seung Jun Oh, Seunghun Baek, Jonghyun Kim, and Taekyung Lee. 2022. "Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning" Applied Sciences 12, no. 20: 10646. https://doi.org/10.3390/app122010646
APA StyleYu, J., Oh, S. J., Baek, S., Kim, J., & Lee, T. (2022). Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning. Applied Sciences, 12(20), 10646. https://doi.org/10.3390/app122010646