Evaluation of the Structural, Optical and Photoconversion Efficiency of ZnO Thin Films Prepared Using Aerosol Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the AD ZnO (AZ) Fillms
2.2. Fabrication of DSSCs Using the AZ Films
3. Results and Discussion
3.1. Crystallinity of the AZ Thin Films
3.2. Morphologies and Thickness of the Aerosol-Deposited ZnO Films
3.3. Optical Properties of the AZ Films
3.4. Photoconversion Efficiency of the DSSCs Fabricated Using the AZ Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, J.A.; Mock, A.L.; Jacobs, A.G.; Schubert, M.; Zhang, Y.; Tadjer, M.J. A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Appl. Phys. Rev. 2022, 9, 011315. [Google Scholar] [CrossRef]
- Li, F.; Yu, Y.; Xu, C.; Li, Y.; He, Z.; Bi, X. Atomic-Layer-Deposited ZnO/Al2O3 Nanolaminates for White-Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 8730–8734. [Google Scholar] [CrossRef]
- Lan, Y.; Yang, G.; Zhao, Y.; Liu, Y.; Demir, A. Facet passivation process of high-power laser diodes by plasma cleaning and ZnO film. Appl. Surf. Sci. 2022, 596, 153506. [Google Scholar] [CrossRef]
- Choi, H.; Kim, K.; Kim, M.; Kim, J.D.; Cho, I.; Kim, I.; Chae, H.; Han, I.; Kim, H.; Seo, J.H.; et al. Solution-Processable Ag-Mediated ZnO Nanowires for Scalable Low-Temperature Fabrication of Flexible Devices. ACS Appl. Electron. Mater. 2022, 4, 910–916. [Google Scholar] [CrossRef]
- Adesoye, S.; Dellinger, K. ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review. Sens. Bio-Sens. Res. 2022, 37, 100499. [Google Scholar] [CrossRef]
- Badgujar, A.C.; Yadav, B.S.; Jha, G.K.; Dhage, S.R. Room Temperature Sputtered Aluminum-Doped ZnO Thin Film Transparent Electrode for Application in Solar Cells and for Low-Band-Gap Optoelectronic Devices. ACS Omega 2022, 7, 14203–14210. [Google Scholar] [CrossRef]
- Kumar, R.R.; Shukla, R.; Pandey, S.K. Impact of radio frequency power on the optoelectronic properties of ZnO films. Opt. Quantum Electron. 2022, 54, 1–9. [Google Scholar] [CrossRef]
- Singh, J.; Srivastava, A. Morphological evolution and its correlation with optical and field emission properties in pulsed laser deposited ZnO nanostructures. Mater. Sci. Semicond. Process. 2022, 138, 106282. [Google Scholar] [CrossRef]
- Pung, S.-Y.; Choy, K.-L.; Hou, X. Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique. J. Cryst. Growth 2010, 312, 2049–2055. [Google Scholar] [CrossRef]
- Shkir, M. Enhancement in optical and electrical properties of ZnO thin films via Co doping for photodetector applications. Mater. Sci. Eng. B 2022, 284, 115861. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Khan, Z.R.; Gandouzi, M.; Mohamed, M.; Bouzidi, M.; Shkir, M.; Alshammari, H.M. Tailoring the optical properties and the UV detection performance of sol-gel deposited ZnO nanostructured thin films via Cd and Na co-doping. Opt. Mater. 2022, 126, 112146. [Google Scholar] [CrossRef]
- Gueddouch, K.; Zidane, M.; Temsamani, R.; Mrigal, A.; Addou, M.; Ettami, S. Structural, optical and electrical properties of F doped ZnO films: Experimental and theoretical study. Mater. Today Proc. 2022, 66, 151–157. [Google Scholar] [CrossRef]
- Althobaiti, M.; Alotaibi, A.A.; Alharthi, S.S.; Badawi, A. Modification of the structural, linear and nonlinear optical properties of zinc oxide thin films via barium and magnesium doping. Opt. Mater. 2022, 131, 112646. [Google Scholar] [CrossRef]
- Fiaz Khan, M.; Siraj, K.; Anwar, M.S.; Irshad, M.; Hussain, J.; Faiz, H.; Majeed, S.; Dosmailov, M.; Patek, J.; Pedarnig, J.D.; et al. 700 keV Ni+2 ions Induced Modification in Structural, Surface, Magneto-Optic and Optical Properties of ZnO Thin Films. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 2016, 368, 45–49. [Google Scholar] [CrossRef]
- Toe, M.; Jusoh, N.; Pung, S.; Yaacob, K.; Matsuda, A.; Tan, W.; Han, S. Effect of ZnO Seed Layer on the Growth of ZnO Nanorods on Silicon Substrate. Mater. Today Proc. 2019, 17, 553–559. [Google Scholar] [CrossRef]
- Tan, W.K.; Muto, H.; Ito, T.; Kawamura, G.; Lockman, Z.; Matsuda, A. Facile Fabrication of Plasmonic Enhanced Noble-Metal-Decorated ZnO Nanowire Arrays for Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2020, 20, 359–366. [Google Scholar] [CrossRef]
- Tan, W.K.; Ito, T.; Kawamura, G.; Muto, H.; Lockman, Z.; Matsuda, A. Controlled facile fabrication of plasmonic enhanced Au-decorated ZnO nanowire arrays dye-sensitized solar cells. Mater. Today Commun. 2017, 13, 354–358. [Google Scholar] [CrossRef]
- Toe, M.Z.; Pung, S.-Y.; Yaacob, K.A.B.; Han, S.S. Effect of Dip-Coating Cycles on the Structural and Performance of ZnO Thin Film-based DSSC. Arab. J. Sci. Eng. 2021, 46, 6741–6751. [Google Scholar] [CrossRef]
- Sonklin, T.; Munthala, D.; Leuasoongnoen, P.; Janphuang, P.; Pojprapai, S. Effect of substrate-tilting angle-dependent grain growth and columnar growth in ZnO film deposited using radio frequency (RF) magnetron sputtering method. J. Mater. Sci. Mater. Electron. 2022, 33, 16977–16986. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L. Morphology and Field Emission of ZnO Nanomaterials at Different Positions. JAMP 2022, 10, 1028–1035. [Google Scholar] [CrossRef]
- Pung, S.-Y.; Choy, K.-L.; Hou, X.; Shan, C. Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 2008, 19, 435609. [Google Scholar] [CrossRef]
- Fasquelle, D.; Députier, S.; Bouquet, V.; Guilloux-Viry, M. Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors 2022, 10, 285. [Google Scholar] [CrossRef]
- Kouhestanian, E.; Ranjbar, M.; Mozaffari, S.; Salaramoli, H. Investigating the Effects of Thickness on the Performance of ZnO-Based DSSC. Prog. Color. Color. Coat. 2021, 14, 101–112. [Google Scholar]
- Sheriff, M.H.; Murugan, S.; Manivasaham, A.; Kumar, R.A. Electro spray technique to enhance the physical property of sulphur doped zinc oxide thin film. Mater. Today Proc. 2021, 47, 1717–1723. [Google Scholar] [CrossRef]
- Pham, A.T.T.; Van Hoang, D.; Nguyen, T.H.; Le, O.K.T.; Wong, D.P.; Kuo, J.-L.; Chen, K.-H.; Phan, T.B.; Tran, V.C. Hydrogen enhancing Ga doping efficiency and electron mobility in high-performance transparent conducting Ga-doped ZnO films. J. Alloys Compd. 2021, 860, 158518. [Google Scholar] [CrossRef]
- Abdullah, H.; Ariyanto, N. Structural and optical properties of ZnO thin films for dye-sensitized solar cell. J. Appl. Sci. 2014, 14, 965–968. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pathan, H.M.; Salunke-Gawali, S.; Butcher, R.J. Aminonaphthoquinones as photosensitizers for mesoporous ZnO based dye-sensitized solar cells. J. Alloys Compd. 2020, 845, 156279. [Google Scholar] [CrossRef]
- Chawla, A.K.; Kaur, D.; Chandra, R. Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering. Opt. Mater. 2007, 29, 995–998. [Google Scholar] [CrossRef]
- Akedo, J. Room temperature impact consolidation and application to ceramic coatings: Aerosol deposition method. J. Ceram. Soc. Jpn. 2020, 128, 101–116. [Google Scholar] [CrossRef]
- Tan, W.K.; Shigeta, Y.; Yokoi, A.; Kawamura, G.; Matsuda, A.; Muto, H. Investigation of the anchor layer formation on different substrates and its feasibility for optical properties control by aerosol deposition. Appl. Surf. Sci. 2019, 483, 212–218. [Google Scholar] [CrossRef]
- Eckstein, U.; Khansur, N.H.; Urushihara, D.; Asaka, T.; Kakimoto, K.-I.; Fey, T.; Webber, K.G. Defect modulated dielectric properties in powder aerosol deposited ceramic thick films. Ceram. Int. 2022, 48, 3308–33091. [Google Scholar] [CrossRef]
- Zhuo, F.; Eckstein, U.R.; Khansur, N.H.; Dietz, C.; Urushihara, D.; Asaka, T.; Kakimoto, K.; Webber, K.G.; Fang, X.; Rödel, J. Temperature-induced changes of the electrical and mechanical properties of aerosol-deposited BaTiO3 thick films for energy storage applications. J. Am. Ceram 2022, 105, 4108–4121. [Google Scholar] [CrossRef]
- Nadaud, K.; Sadl, M.; Bah, M.; Levassort, F.; Ursic, H. Effect of thermal annealing on dielectric and ferroelectric properties of aerosol-deposited 0.65 Pb (Mg1/3Nb2/3) O3-0.35 PbTiO3 thick films. Appl. Phys. Lett. 2022, 120, 112902. [Google Scholar] [CrossRef]
- Teshima, S.; Ono, Y.; Goto, N.; Inada, R. Electrical conducting properties of Na2Zn2TeO6 thick films fabricated by aerosol deposition. Mater. Lett. 2022, 324, 132640. [Google Scholar] [CrossRef]
- Hahn, B.-D.; Lee, J.-M.; Park, D.-S.; Choi, J.-J.; Ryu, J.; Yoon, W.-H.; Lee, B.-K.; Shin, D.-S.; Kim, H.-E. Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2010, 518, 2194–2199. [Google Scholar] [CrossRef]
- Toe, M.Z.; Tan, W.K.; Muto, H.; Kawamura, G.; Matsuda, A.; Yaacob, K.A.B.; Pung, S.-Y. Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique. Electron. Mater. 2022, 3, 27. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Ravichandran, K.; Vasanthi, M.; Thirumurugan, K.; Sakthivel, B.; Karthika, K. Annealing induced reorientation of crystallites in Sn doped ZnO films. Opt. Mater. 2014, 37, 59–64. [Google Scholar] [CrossRef]
- Exner, J.; Hahn, M.; Schubert, M.; Hanft, D.; Fuierer, P.; Moos, R. Powder requirements for aerosol deposition of alumina films. Adv. Powder Technol. 2015, 26, 1143–1151. [Google Scholar] [CrossRef]
- Gurav, A.; Kodas, T.; Pluym, T.; Xiong, Y. Aerosol Processing of Materials. Aerosol Sci. Technol. 1993, 19, 411–452. [Google Scholar] [CrossRef]
- Tan, W.K.; Kawamura, G.; Muto, H.; Razak, K.A.; Lockman, Z.; Matsuda, A. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings. J. Lumin 2015, 158, 44–49. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Aziz, S.N.Q.A.A.; Meng, K.C.; Pung, S.-Y.; Lockman, Z.; Ul-Hamid, A.; Tan, W.K. Rapid growth of zinc oxide nanorods on kanthal wires by direct heating method and its photocatalytic performance in pollutants removal. J. Ind. Eng. Chem. 2022, 118, 226–238. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
- Cho, S.H.; Yoon, Y.J. Multi-layer TiO2 films prepared by aerosol deposition method for dye-sensitized solar cells. Thin Solid Films 2013, 547, 91–94. [Google Scholar] [CrossRef]
No. | Deposition Technique | Equipment Cost | Thickness Uniformity | Reference |
---|---|---|---|---|
1 | Sol-Gel | Low | Uniform coverage | [15] |
2 | Hydrothermal | Low | Thick film | [16] |
3 | Dip-Coating | Low | Porous and crack | [18] |
4 | Sputtering | High | High and dense film | [28] |
5 | CVD | High (complex steps) | - | [20] |
6 | ALD | High | Smooth surface | [21] |
7 | PLD | High | Columnar growth | [22] |
Deposition Parameters | |
---|---|
Raw material | ZnO (~100 nm) commercial powder |
Carrier gas | Nitrogen |
Substrate | FTO [20 × 30 mm2, 1.6 mm (t)] |
Working distance (mm) | 10 |
Carrier gas flow rate (L/min) | 30 |
Deposition cycles | 1, 2, 3 |
Deposition time (min)/cycle | 4.25 |
Pressure (Pa) | 20 |
Deposition Temperature | Room temperature |
AZ Films -DSSC | AZ-I | AZ-II | AZ-III |
---|---|---|---|
AD Flow Rate | 30 L/min | ||
Crystallinity (confirmed using XRD) | Yes | Yes | Yes |
Morphology | Smooth Surface | Moderate smooth surface | Rough surface with many loose particle agglomerates |
Thickness (nm) | 271 | 249 | 258 |
IUV/IVis | 0.82 | 0.84 | 0.53 |
Jsc (mA/cm2) | 1.64 | 4.62 | 0.70 |
Voc (V) | 0.69 | 0.66 | 0.56 |
FF | 0.64 | 0.58 | 0.50 |
PCE (%) | 0.73 | 1.78 | 0.19 |
IPCE (%) | 16 | 52 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toe, M.Z.; Tan, W.K.; Muto, H.; Kawamura, G.; Matsuda, A.; Pung, S.-Y. Evaluation of the Structural, Optical and Photoconversion Efficiency of ZnO Thin Films Prepared Using Aerosol Deposition. Appl. Sci. 2023, 13, 1905. https://doi.org/10.3390/app13031905
Toe MZ, Tan WK, Muto H, Kawamura G, Matsuda A, Pung S-Y. Evaluation of the Structural, Optical and Photoconversion Efficiency of ZnO Thin Films Prepared Using Aerosol Deposition. Applied Sciences. 2023; 13(3):1905. https://doi.org/10.3390/app13031905
Chicago/Turabian StyleToe, May Zin, Wai Kian Tan, Hiroyuki Muto, Go Kawamura, Atsunori Matsuda, and Swee-Yong Pung. 2023. "Evaluation of the Structural, Optical and Photoconversion Efficiency of ZnO Thin Films Prepared Using Aerosol Deposition" Applied Sciences 13, no. 3: 1905. https://doi.org/10.3390/app13031905
APA StyleToe, M. Z., Tan, W. K., Muto, H., Kawamura, G., Matsuda, A., & Pung, S. -Y. (2023). Evaluation of the Structural, Optical and Photoconversion Efficiency of ZnO Thin Films Prepared Using Aerosol Deposition. Applied Sciences, 13(3), 1905. https://doi.org/10.3390/app13031905