Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Crystal Structure
3.2. Optical Measurements
3.2.1. Transmission Spectra
3.2.2. Refractive Index and Thickness
3.2.3. Optical Zone
3.2.4. Calculations of the Shape of the Urbach Absorption Edge
3.2.5. Quantitative Assessment of the Effects of Urbach Tail
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klingshirn, C.F.; Meyer, B.K.; Waag, A.; Hoffmann, A.; Geurts, J. Zinc Oxide—From Fundamental Properties Towards Novel Applications; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-10576-0. [Google Scholar]
- Korotcenkov, G. Nanostructured Zinc Oxide: Synthesis, Properties and Applications; Awasthi, K., Ed.; Metal Oxid.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128189009. [Google Scholar]
- Witkowski, B.S. Applications of ZnO Nanorods and Nanowires—A Review. Acta Phys. Pol. A 2018, 134, 1226–1246. [Google Scholar] [CrossRef]
- Xiao, Y. Application Analysis of Zinc Oxide Nanomaterials Based on Quantum Dots in Energy Environment. J. Phys. Conf. Ser. 2021, 1748, 52011. [Google Scholar] [CrossRef]
- Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Aroutiounian, V.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wu, H.; Yang, J.; Wang, Y.; Zhang, J.; Bao, Q.; Wang, M.; Ma, Z.; Tress, W.; et al. A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices. Nat. Commun. 2022, 13, 4387. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Ng, A.M.C.; Chen, X.Y. ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum. Electron. 2010, 34, 191–259. [Google Scholar] [CrossRef]
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Zahoor, R.; Jalil, A.; Ilyas, S.Z.; Ahmed, S.; Hassan, A. Optoelectronic and solar cell applications of ZnO nanostructures. Results Surf. Interfaces 2021, 2, 100003. [Google Scholar] [CrossRef]
- Safa, S.; Nejad, A.M. Influence of Cr dopant on the microstructure and optical properties of ZnO nanorods. J. Adv. Mater. Process. 2014, 2, 19–24. [Google Scholar]
- Stehr, J.; Buyanova, I.; Chen, W. Defects in Advanced Electronic Materials and Novel Low Dimensional Structures; Stehr, J., Buyanova, I., Chen, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-102053-1. [Google Scholar]
- Ayoub, I.; Kumar, V.; Abolhassani, R.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H.C.; Mishra, Y.K. Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnol. Rev. 2022, 11, 575–619. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Yang, Y.; Zhang, Z.; Bao, X.; Yang, R.; Li, S.; Sun, L. Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing. Sci. China Technol. Sci. 2013, 56, 25–31. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.S.; Sun, Y.M.; Shi, C.S.; Xu, F.Q.; Pan, H.B. The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 199, 286–290. [Google Scholar] [CrossRef]
- Kittilstved, K.R.; Liu, W.K.; Gamelin, D.R. Electronic structure origins of polarity-dependent high-Tc ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 2006, 5, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, J.; Chen, X.; Zhang, X.; Wu, Y.; Li, P.; Niu, X.; Luo, C.; Li, L. Structural and optical properties of cobalt doped ZnO nanocrystals. Superlattices Microstruct. 2012, 52, 824–833. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieniek, B.; Stefaniuk, I.; Virt, I.; Gamernyk, R.V.; Rogalska, I. Zinc–Cobalt Oxide Thin Films: High Curie Temperature Studied by Electron Magnetic Resonance. Molecules 2022, 27, 8500. [Google Scholar] [CrossRef]
- Mukhtar, M.; Munisa, L.; Saleh, R. Co-Precipitation Synthesis and Characterization of Nanocrystalline Zinc Oxide Particles Doped with Cu2+ Ions. Mater. Sci. Appl. 2012, 3, 543–551. [Google Scholar] [CrossRef] [Green Version]
- El-Hilo, M.; Dakhel, A.A.; Ali-Mohamed, A.Y. Room temperature ferromagnetism in nanocrystalline Ni-doped ZnO synthesized by co-precipitation. J. Magn. Magn. Mater. 2009, 321, 2279–2283. [Google Scholar] [CrossRef]
- Zhang, F.; Yuan, X.; Fu, D.; Zhou, L.; Huang, P.; Chen, T. Co-doped zinc oxide microspheres as photocatalysts for enhanced uranium extraction. J. Radioanal. Nucl. Chem. 2023, 332, 289–296. [Google Scholar] [CrossRef]
- Yang, A.; Hou, Q.; Yin, X.; Qi, M.; Wang, Z. First principles study on p-type conductivity and new magnetic mechanism of ZnO:Sm with point defects in different strains. Solid State Commun. 2022, 348–349, 114738. [Google Scholar] [CrossRef]
- Vegesna, S.V.; Bhat, V.J.; Bürger, D.; Dellith, J.; Skorupa, I.; Schmidt, O.G.; Schmidt, H. Increased static dielectric constant in ZnMnO and ZnCoO thin films with bound magnetic polarons. Sci. Rep. 2020, 10, 6698. [Google Scholar] [CrossRef] [Green Version]
- Ciolan, M.A.; Motrescu, I. Pulsed Laser Ablation: A Facile and Low-Temperature Fabrication of Highly Oriented n-Type Zinc Oxide Thin Films. Appl. Sci. 2022, 12, 917. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Z.; Fasquelle, D.; Députier, S.; Bouquet, V.; Guilloux-Viry, M. Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosens 2022, 10, 285. [Google Scholar] [CrossRef]
- Haider, A.J.; Jabbar, A.A.; Ali, G.A. A review of Pure and Doped ZnO Nanostructure Production and its Optical Properties Using Pulsed Laser Deposition Technique. J. Phys. Conf. Ser. 2021, 1795, 12015. [Google Scholar] [CrossRef]
- Tortosa, M.; Mollar, M.; Marí, B.; Lloret, F. Optical and magnetic properties of ZnCoO thin films synthesized by electrodeposition. J. Appl. Phys. 2008, 104, 33901. [Google Scholar] [CrossRef] [Green Version]
- Cieniek, B.; Stefaniuk, I.; Virt, I. EMR spectra thin films doped with high concentration of Co and Cr on quartz and sapphire substrates. Acta Phys. Pol. A 2017, 132, 30–33. [Google Scholar] [CrossRef]
- Cieniek, B.; Stefaniuk, I.; Virt, I. EPR study of ZnO:Co thin films grown by the PLD method. Nukleonika 2013, 58, 359–363. [Google Scholar]
- Wisz, G.; Virt, I.; Sagan, P.; Potera, P.; Yavorskyi, R. Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Method. Nanoscale Res. Lett. 2017, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Virt, I.; Hadzaman, I.V.; Bilyk, I.S.; Rudyi, I.O.; Kurilo, I.V.; Frugynskyi, M.S.; Potera, P. Properties of ZnO and ZnMnO Thin Films Obtained by Pulsed Laser Ablation. Acta Phys. Pol. A 2010, 117, 34–37. [Google Scholar] [CrossRef]
- Seetawan, U.; Jugsujinda, S.; Seetawan, T.; Ratchasin, A.; Euvananont, C.; Junin, C.; Thanachayanont, C.; Chainaronk, P. Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Mater. Sci. Appl. 2011, 2, 1302–1306. [Google Scholar] [CrossRef] [Green Version]
- Chau, J.L.H.; Yang, M.C.; Nakamura, T.; Sato, S.; Yang, C.C.; Cheng, C.W. Fabrication of ZnO thin films by femtosecond pulsed laser deposition. Opt. Laser Technol. 2010, 42, 1337–1339. [Google Scholar] [CrossRef]
- Cullity, B.D.; Weymouth, J.W. Elements of X-Ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar] [CrossRef] [Green Version]
- Shunmuga Sundaram, P.; Sangeetha, T.; Rajakarthihan, S.; Vijayalaksmi, R.; Elangovan, A.; Arivazhagan, G. XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Phys. B Condens. Matter 2020, 595, 412342. [Google Scholar] [CrossRef]
- Zhang, D.; He, Y.; Wang, C.Z. Structure and optical properties of nanostructured zinc oxide films with different growth temperatures. Opt. Laser Technol. 2010, 42, 556–560. [Google Scholar] [CrossRef]
- Saleem, M.; Fang, L.; Huang, Q.L.; Li, D.C.; Wu, F.; Ruan, H.B.; Kong, C.Y. Annealing Treatment Of Zno Thin Films Deposited By Sol–Gel Method. Surf. Rev. Lett. 2012, 19, 1250055. [Google Scholar] [CrossRef]
- Roguai, S.; Djelloul, A. Roles of Cobalt Doping on Structural and Optical of ZnO Thin Films by Ultrasonic Spray Pyrolysis. In Thin Films; Ares, A.E., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83881-993-4. [Google Scholar]
- Aydin, H.; Aydin, C.; Al-Ghamdi, A.A.; Farooq, W.A.; Yakuphanoglu, F. Refractive index dispersion properties of Cr-doped ZnO thin films by sol-gel spin coating method. Optik 2016, 127, 1879–1883. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, P.P.; Murakami, R.I.; Song, X.P. First-principles simulation and experimental evidence for improvement of transmittance in ZnO films. Prog. Nat. Sci. Mater. Int. 2011, 21, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, N.; Deepak, N.K. B-N codoped p type ZnO thin films for optoelectronic applications. Mater. Res. 2018, 21, 20170618. [Google Scholar] [CrossRef] [Green Version]
- Hassanien, A.S.; Aly, K.A.; Akl, A.A. Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 2016, 685, 733–742. [Google Scholar] [CrossRef]
- Hussain, A.A.-K.; Aadim, K.A.; Slman, H.M. Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD). Iraqi J. Phys. 2019, 12, 56–61. [Google Scholar] [CrossRef]
- Wang, M.D.; Zhu, D.Y.; Liu, Y.; Zhang, L.; Zheng, C.X.; He, Z.H.; Chen, D.H.; Wen, L.S. Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition. Chin. Phys. Lett. 2008, 25, 743–746. [Google Scholar] [CrossRef]
- Bedia, A.; Bedia, F.Z.; Aillerie, M.; Maloufi, N.; Benyoucef, B. Influence of the Thickness on Optical Properties of Sprayed ZnO Hole-blocking Layers Dedicated to Inverted Organic Solar Cells. Energy Procedia 2014, 50, 603–609. [Google Scholar] [CrossRef]
- Müllerová, J.; Mudroň, J. Determination of optical parameters and thickness of thin films deposited on absorbing substrates using their reflection spectra. Acta Phys. Slovaca 2000, 50, 477–488. [Google Scholar]
- Gadallah, A.S.; El-Nahass, M.M. Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Adv. Condens. Matter Phys. 2013, 2013, 234546. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.C.; Fanga, L.; Peng, L.P.; Liu, G.B.; Ruan, H.B.; Wu, F.; Kong, C.Y. Effect of In-doping on the Optical Constants of ZnO Thin Films. Phys. Procedia 2012, 32, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Golaszewska, K.; Kamińska, E.; Pustelny, T.; Struk, P.; Piotrowski, T.; Piotrowska, A.; Ekielski, M.; Kruszka, R.; Wzorek, M.; Borysiewicz, M.; et al. Planar optical waveguides for application in optoelectronic gas sensors. Acta Phys. Pol. A 2008, 114, A-223–A-230. [Google Scholar] [CrossRef]
- Stelling, C.; Singh, C.R.; Karg, M.; König, T.A.F.; Thelakkat, M.; Retsch, M. Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells. Sci. Rep. 2017, 7, 42530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaphle, A.; Hari, P. Variation of index of refraction in cobalt doped ZnO nanostructures. J. Appl. Phys. 2017, 122, 165304. [Google Scholar] [CrossRef]
- Godavarti, U.; Mote, V.D.D.; Dasari, M. Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J. Asian Ceram. Soc. 2017, 5, 391–396. [Google Scholar] [CrossRef]
- Hassan, A.I.; Yahya, A.M. Structural and optical properties of NiO-ZnO nanocomposite thin film prepared by spray pyrolysis. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Long Island, NY, USA, 2020; Volume 2213, p. 20208. [Google Scholar]
- Sorar, I.; Saygin-Hinczewski, D.; Hinczewski, M.; Tepehan, F.Z. Optical and structural properties of Si-doped ZnO thin films. Appl. Surf. Sci. 2011, 257, 7343–7349. [Google Scholar] [CrossRef]
- Stefaniuk, I.; Cieniek, B.; Rogalska, I.; Virt, I.; Kościak, A. Magnetic properties of ZnO:Co layers obtained by pulsed laser deposition method. Mater. Sci. 2018, 36, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Ilican, S.; Caglar, M.; Caglar, Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci. Pol. 2007, 25, 709–718. [Google Scholar]
- Kumar, D.; Jat, S.K.; Khanna, P.K.; Vijayan, N.; Banerjee, S. Synthesis, characterization, and studies of PVA/Co-doped ZnO nanocomposite films. Int. J. Green Nanotechnol. Biomed. 2012, 4, 408–416. [Google Scholar] [CrossRef]
- Khlifi, N.; Ihzaz, N.; Mrabet, S.; Alyamani, A.; El Mir, L. X-ray peaks profile analysis, optical and cathodoluminescence investigations of cobalt-doped ZnO nanoparticles. J. Lumin. 2022, 245, 118770. [Google Scholar] [CrossRef]
- Kumar, Y.; Sahai, A.; Olive-Méndez, S.F.; Goswami, N.; Agarwal, V. Morphological transformations in cobalt doped zinc oxide nanostructures: Effect of doping concentration. Ceram. Int. 2016, 42, 5184–5194. [Google Scholar] [CrossRef]
- Benramache, S.; Benhaoua, B. Influence of substrate temperature and Cobalt concentration on structural and optical properties of ZnO thin films prepared by Ultrasonic spray technique. Superlattices Microstruct. 2012, 52, 807–815. [Google Scholar] [CrossRef]
- Kaphle, A.; Echeverria, E.; Mcllroy, D.N.; Roberts, K.; Hari, P. Thermo-Optical Properties of Cobalt-Doped Zinc Oxide (ZnO) Nanorods. J. Nanosci. Nanotechnol. 2019, 19, 3893–3904. [Google Scholar] [CrossRef]
- Kaphle, A.; Reed, T.; Apblett, A.; Hari, P. Doping efficiency in cobalt-doped ZnO nanostructured materials. J. Nanomater. 2019, 2019, 7034620. [Google Scholar] [CrossRef]
- Abirami, N.; Arulanantham, A.M.S.; Wilson, K.S.J.J. Structural and magnetic properties of cobalt doped ZnO thin films deposited by cost effective nebulizer spray pyrolysis technique. Mater. Res. Express 2020, 7, 26405. [Google Scholar] [CrossRef]
- Siagian, S.M.; Sutanto, H.; Permatasari, A. Effect of co doping to the optical properties of ZnO:Co Thin films deposited on glass substrate by sol-gel spray coating technique. J. Phys. Conf. Ser. 2017, 795, 12009. [Google Scholar] [CrossRef] [Green Version]
- Solati, E.; Dejam, L.; Dorranian, D. Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol. 2014, 58, 26–32. [Google Scholar] [CrossRef]
- Shaban, M.; Zayed, M.; Hamdy, H. Nanostructured ZnO thin films for self-cleaning applications. RSC Adv. 2017, 7, 617–631. [Google Scholar] [CrossRef]
- Coulter, J.B.; Birnie, D.P. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. Phys. Status Solidi Basic Res. 2018, 255, 1700393. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi Basic Res. 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Márquez, E.; Bernal-Oliva, A.M.; González-Leal, J.M.; Prieto-Alcón, R.; Ledesma, A.; Jiménez-Garay, R.; Mártil, I. Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1–1.8 eV). Mater. Chem. Phys. 1999, 60, 231–239. [Google Scholar] [CrossRef]
- Boukhachem, A.; Ouni, B.; Bouzidi, A.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M. Quantum Effects of Indium/Ytterbium Doping on ZnO-Like Nano-Condensed Matter in terms of Urbach-Martienssen and Wemple-DiDomenico Single-Oscillator Models Parameters. ISRN Condens. Matter Phys. 2012, 2012, 738023. [Google Scholar] [CrossRef] [Green Version]
- Quiñones-Galván, J.G.; Cardona, D.; Rivera, L.P.; Gómez-Rosas, G.; Chávez-Chávez, A. Effect of the copper plasma density on the growth of SiOx-Cu thin films by PLD. Mater. Lett. 2021, 284, 129024. [Google Scholar] [CrossRef]
- Escalona, M.; Bhuyan, H.; Valenzuela, J.C.; Ibacache, S.; Wyndham, E.; Favre, M.; Veloso, F.; Ruiz, H.M.; Wagenaars, E. Comparative study on the dynamics and the composition between a pulsed laser deposition (PLD) and a plasma enhanced PLD (PE-PLD). Results Phys. 2021, 24, 104066. [Google Scholar] [CrossRef]
- Saadi, H.; Rhouma, F.I.H.; Benzarti, Z.; Bougrioua, Z.; Guermazi, S.; Khirouni, K. Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Ismail, A.; Abdullah, M.J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King Saud Univ. Sci. 2013, 25, 209–215. [Google Scholar] [CrossRef] [Green Version]
No. | λ, nm | d, nm |
---|---|---|
1 | 1063 | - |
2 | 893 | 1446 |
3 | 777 | 1541 |
4 | 701 | 1847 |
5 | 624 | 1464 |
6 | 571 | 1735 |
No. | lmax | lmin | lav | Tmax | Tmin | Tmax − Tmin | Tmax × Tmin | n |
---|---|---|---|---|---|---|---|---|
1 | 1059.89 | 967.83 | 1013.86 | 52.57 | 48.39 | 4.17 | 2544.43 | 1.6231 |
2 | 894.94 | 827.73 | 861.33 | 50.62 | 46.44 | 4.17 | 2351.49 | 1.6235 |
3 | 781.11 | 728.80 | 754.95 | 48.39 | 44.41 | 3.98 | 2149.39 | 1.6237 |
4 | 698.51 | 649.22 | 673.87 | 45.93 | 41.97 | 3.96 | 1928.15 | 1.6244 |
5 | 625.55 | 593.07 | 608.67 | 42.58 | 39.72 | 2.86 | 1700.42 | 1.6232 |
6 | 571.77 | 541.86 | 556.82 | 40.23 | 37.17 | 3.05 | 1495.88 | 1.6243 |
7 | 523.14 | 498.19 | 510.67 | 36.77 | 34.12 | 2.65 | 1254.98 | 1.6246 |
Ref. | Concentration of Co,% | Energy Band Gap, eV | Annealed Temperature, °C |
---|---|---|---|
[61] | 1 | 3.17 | as grown |
[62] | 1 | 3.23 | as grown |
[63] | 2 | 3.36 | 350 |
[61] | 3 | 2.99 | as grown |
[61] | 5 | 3.05 | as grown |
[64] | 5 | 3.17 | 700 |
[64] | 5 | 3.18 | 900 |
[62] | 5 | 3.18 | as grown |
[64] | 5 | 3.25 | 300 |
[64] | 5 | 3.31 | 500 |
[64] | 5 | 3.30 | as grown |
[62] | 10 | 3.13 | as grown |
[64] | 10 | 3.13 | 700 |
[64] | 10 | 3.16 | 900 |
[64] | 10 | 3.17 | 500 |
[64] | 10 | 3.21 | 300 |
[64] | 10 | 3.27 | as grown |
[64] | 15 | 3.10 | 700 |
[64] | 15 | 3.12 | 900 |
[64] | 15 | 3.14 | 500 |
[65] | 15 | 3.18 | 300 |
[64] | 15 | 3.19 | 300 |
[64] | 15 | 3.23 | as grown |
this work | 20 | 2.63 | as grown |
[64] | 20 | 3.09 | 700 |
[64] | 20 | 3.11 | 900 |
this work | 20 | 3.11 | 300 |
[64] | 20 | 3.12 | 500 |
this work | 20 | 3.15 | 400 |
[64] | 20 | 3.16 | 300 |
[64] | 20 | 3.18 | as grown |
this work | 20 | 3.28 | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potera, P.; Virt, I.S.; Cieniek, B. Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers. Appl. Sci. 2023, 13, 2701. https://doi.org/10.3390/app13042701
Potera P, Virt IS, Cieniek B. Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers. Applied Sciences. 2023; 13(4):2701. https://doi.org/10.3390/app13042701
Chicago/Turabian StylePotera, Piotr, Ihor S. Virt, and Bogumił Cieniek. 2023. "Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers" Applied Sciences 13, no. 4: 2701. https://doi.org/10.3390/app13042701
APA StylePotera, P., Virt, I. S., & Cieniek, B. (2023). Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers. Applied Sciences, 13(4), 2701. https://doi.org/10.3390/app13042701