Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
Preparation of TiO2:ZnO/CuO
- For Sample #14: deposition time 10 s, argon flow rate 1 cm3/s; the magnetron shutter was closed, flows were set for deposition of the CuO layer, the plasma beam was stabilized for 20 s with the shutter closed, and the deposition of the CuO layer began;
- For Samples #15 and #18: no Cu buffer between TiO2:ZnO and CuO was used;
- For Sample #26: deposition time 5 s, argon flow 4 cm3/s; the oxygen flow was switched on, and the CuO layer deposition was started smoothly,
- For Sample #27: deposition time 5 s, argon flow 1 cm3/s; the oxygen flow was switched on, the argon flow was set to 1 cm3/s, and the CuO layer deposition was started smoothly.
- For Samples #14, #15: the magnetron shutter was closed after CuO deposition, the argon flow was set to 1 cm3/s, the plasma beam was stabilized for 20 s with the shutter closed, and the deposition of the Cu layer by 60 s was initiated;
- For Sample #18: the oxygen flow was closed after the CuO deposition (the argon flow stayed at 1 cm3/s), and the Cu layer deposition was started smoothly by 60 s;
- For Sample #26: the oxygen flow was closed after CuO deposition (the argon flow stayed at 1 cm3/s), and the Cu layer deposition was started smoothly by 20 s,
- For Sample #27: the oxygen flow was closed after CuO deposition, the argon flow was set to 4 cm3/s, and the Cu layer deposition was started smoothly by 20 s.
3. Results
3.1. Theoretical Calculations of the Electronic Properties of TiO2:ZnO/CuO
3.2. Structure Analysis of the TiO2:ZnO/CuO Heterostructures
3.3. I-V Characteristics and Parameters Measurement
3.4. Optical Properties of Heterostucture TiO2:ZnO/CuO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bracht, H. Copper related diffusion phenomena in germanium and silicon. Mater. Sci. Semicond. Process. 2004, 7, 113–124. [Google Scholar] [CrossRef]
- Rha, S.K.; Lee, W.J.; Lee, S.Y.; Hwang, Y.S.; Lee, Y.J.; Kim, D.I.; Kim, D.W.; Chun, S.S.; Park, C.O. Improved TiN film as a diffusion barrier between copper and silicon. Thin Solid Film. 1988, 320, 134–140. [Google Scholar] [CrossRef]
- Wang, M.T.; Lin, Y.C.; Chen, M.C. Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion. J. Electrochem. Soc. 1998, 145, 2538–2545. [Google Scholar] [CrossRef]
- Laurila, T.; Zeng, K.; Kivilahti, J.K.; Molarius, J.; Suni, I. TaC as a diffusion barrier between Si and Cu. J. Appl. Phys. 2002, 91, 5391–5399. [Google Scholar] [CrossRef]
- Byrne, C.; Brennan, B.; McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G. In Situ XPS Chemical Analysis of MnSiO 3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures. ACS Appl. Mater. Interfaces 2016, 8, 2470–2477. [Google Scholar] [CrossRef] [PubMed]
- An, B.-S.; Kwon, Y.; Oh, J.-S.; Lee, C.; Choi, S.; Kim, H.; Lee, M.; Pae, S.; Yang, C.-W. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect. ACS Appl. Mater. Interfaces 2020, 12, 3104–3113. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Y.; Teng, C.; Cao, H. Recent advances in barrier layer of cu interconnects. Materials 2020, 13, 5049. [Google Scholar] [CrossRef]
- Aiello, A.F. Investigation of a Self-Assembled Monolayer as a Cu Diffusion Barrier for Solar Cell Metallization. J. Microelectron. Eng. Conf. 2014, 20, 6–10. [Google Scholar]
- Peterson, N.L.; Wiley, C.L. Diffusion and point defects in Cu2O. J. Phys. Chem. Solids 1984, 45, 281–294. [Google Scholar] [CrossRef]
- Moore, W.J.; Selikson, B. The Diffusion of Copper in Cuprous Oxide. J. Chem. Phys. 1951, 19, 1539–1543, Erratum in J. Chem. Phys. 1952, 20, 927. [Google Scholar] [CrossRef]
- Tomlinson, W.J.; Yates, J. The diffusion of Cu in copper(i) oxide. J. Phys. Chem. Solids 1977, 38, 1205–1206. [Google Scholar] [CrossRef]
- Iguchi, E.; Yajima, K.; Saito, Y. Oxidation Kinetics of Cu to Cu2O. Trans. Jpn. Inst. Met. 1973, 14, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Maack, B.; Nilius, N. Morphological and Kinetic Insights into Cu2O–CuO Oxidation. Phys. Status Solidi Basic Res. 2020, 257, 1900365. [Google Scholar] [CrossRef] [Green Version]
- Unutulmazsoy, Y.; Cancellieri, C.; Lin, L.; Jeurgens, L.P.H. Reduction of thermally grown single-phase CuO and Cu2O thin films by in-situ time-resolved XRD. Appl. Surf. Sci. 2022, 588, 152896. [Google Scholar] [CrossRef]
- Lee, S.K.; Hsu, H.C.; Tuan, W.H. Oxidation behavior of copper at a temperature below 300 °C and the methodology for passivation. Mater. Res. 2016, 19, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef]
- Rahaman, R.; Sharmin, M.; Podder, J. Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. J. Semicond. 2022, 43, 012801. [Google Scholar] [CrossRef]
- El-Hadary, M.I.; Senthilraja, S.; Zayed, M.E. A hybrid system coupling spiral type solar photovoltaic thermal collector and electrocatalytic hydrogen production cell: Experimental investigation and numerical modelling. Process Saf. Environ. Prot. 2023, 170, 1101–1120. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Senthilraja, S.; Zayed, M.E.; Elsheikh, A.H.; Mostafa, R.R.; Lu, S. A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Appl. Therm. Eng. 2021, 193, 117055. [Google Scholar] [CrossRef]
- Košiček, M.; Zavašnik, J.; Baranov, O.; ŠetinaBatič, B.; Cvelbar, U. Understanding the Growth of Copper Oxide Nanowires and Layers by Thermal Oxidation over a Broad Temperature Range at Atmospheric Pressure. Cryst. Growth Des. 2022, 22, 6656–6666. [Google Scholar] [CrossRef]
- Wisz, G.; Sawicka-Chudy, P.; Wal, A.; Potera, P.; Bester, M.; Płoch, D.; Sibiński, M.; Cholewa, M.; Ruszała, M. TiO2:ZnO/CuO thin film solar cells prepared via reactive direct-current (DC) magnetron sputtering. Appl. Mater. Today 2022, 29, 101673. [Google Scholar] [CrossRef]
- Ab Initio Calculation. Available online: http://sites.google.com/a/kdpu.edu.ua/calculationphysics/ (accessed on 3 February 2023).
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Review. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Bachelet, G.B.; Hamann, D.R.; Schlüter, M. Pseudopotentials That Work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228. [Google Scholar] [CrossRef]
- Saliy, Y.P.; Nykyruy, L.I.; Yavorskyi, R.S.; Adamiak, S. The Surface Morphology of CdTe Thin Films Obtained by Open Evaporation in Vacuum. J. Nano- Electron. Phys. 2017, 9, 410–416. [Google Scholar] [CrossRef]
- Wagner, C. Theorie der Alterung von Niderschlagen durch Umlösen (Ostwald Reifung). Zs. Electrochem. 1961, 65, 581–591. [Google Scholar]
- Ruffino, F.; Grimaldi, M.G. Morphological Characteristics of Au Films Deposited on Ti: A Combined SEM-AFM Study. Coatings 2018, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Pei, T.; Hao, X. A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation. Energies 2019, 12, 1712. [Google Scholar] [CrossRef] [Green Version]
- Tu, K.N.; Mayer, J.W.; Feldman, L.C. Electronic Thin Film Science; Macmilian Publishing Company: New York, NY, USA, 1992; Ruffino, F.; Torrisi, V. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology. Superlatt. Microstruct. 2017, 111, 81–89. [Google Scholar]
- Yavorskyi, R. Features of optical properties of high stable CdTe photovoltaic absorber layer. Phys. Chem. Solid State 2020, 21, 243–253. [Google Scholar] [CrossRef]
- Tatau, N.; Kuech, T.F. Handbook of Crystal Growth: Thin Films and Epitaxy. Materials, Processes, and Technology; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, V.; Ganesan, V. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films. J. Appl. Phys. 2014, 116, 213502. [Google Scholar] [CrossRef]
- Wanjala, K.S.; Njoroge, W.K.; Makori, N.E.; Ngaruiya, J.M. Optical and Electrical Characterization of CuO Thin Films as Absorber Material for Solar Cell Applications. Am. J. Condens. Matter Phys. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Husseina, H.A.; Al-Mayaleeb, K.H. Study the Effect of Thickness on the Optical Properties of Copper Oxide Thin Films by FDTD Method. Turk. J. Comput. Math. Educ. 2021, 12, 3865–3870. [Google Scholar]
- Wisz, G.; Potera, P.; Sawicka-Chudy, P.; Gwóźdź, K. Optical Properties of ITO/Glass Substrates Modified by Silver Nanoparticles for PV Applications. Coatings 2023, 13, 61. [Google Scholar] [CrossRef]
#14 | #15 | #18 | #26 | #27 | |
---|---|---|---|---|---|
Time [min] | 30 | 40 | 30 | 20 | 25 |
Power [W] | 100 | 100 | 100 | 100 | 100 |
Pressure [mbar] | 9.89 × 10−3 | 9.89 × 10−3 | 9.89 × 10−3 | 8.99 × 10−3 | 8.99 × 10−3 |
Distance between the source and substrate [mm] | 58 | 58 | 58 | 58 | 58 |
Oxygen flow rate [cm3/s] | 3.5 | 3.5 | 3.5 | 3 | 2.5 |
Argon flow rate [cm3/s] | 0.5 | 0.5 | 0.5 | 1 | 1 |
Substrate temperature [°C] | 300 | 300 | 350 | 300 | 300 |
Thickness [nm] | 86 | 43 | 57 | 245 | 354 |
#14 | #15 | #18 | #26 | #27 | |
---|---|---|---|---|---|
Time [min] | 30 | 30 | 30 | 30 | 30 |
Power [W] | 70 | 70 | 70 | 70 | 70 |
Pressure [mbar] | 9.23 × 10−3 | 8.75 × 10−3 | 9.41 × 10−3 | 1.05 × 10−2 | 1.11 × 10−2 |
Distance between the source and substrate [mm] | 58 | 58 | 58 | 58 | 58 |
Oxygen flow rate [cm3/s] | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Argon flow rate [cm3/s] | 0.5 | 0.5 | 0.5 | 1 | 1 |
Substrate temperature [°C] | 300 | 300 | 300 | 300 | 300 |
Thickness [nm] | 747 | 723 | 650 | 1654 | 1487 |
Parameter | Sample #26 | Sample # 27 |
---|---|---|
Total cells area [cm2] | 0.7 | |
VOC [mV] | 15 | 11 |
ISC [uA] | 6.8 | 6.1 |
Pmax [nW] | 28.65 | 20.61 |
ɳ [%] | 0.0512 × 10−3 | 0.037 × 10−3 |
FF [%] | 28 | 31 |
Rsh [kΩ] | 2.2 | 1.8 |
Rs [kΩ] | 1.88 | 1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisz, G.; Sawicka-Chudy, P.; Wal, A.; Sibiński, M.; Potera, P.; Yavorskyi, R.; Nykyruy, L.; Płoch, D.; Bester, M.; Cholewa, M.; et al. Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering. Appl. Sci. 2023, 13, 3613. https://doi.org/10.3390/app13063613
Wisz G, Sawicka-Chudy P, Wal A, Sibiński M, Potera P, Yavorskyi R, Nykyruy L, Płoch D, Bester M, Cholewa M, et al. Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering. Applied Sciences. 2023; 13(6):3613. https://doi.org/10.3390/app13063613
Chicago/Turabian StyleWisz, Grzegorz, Paulina Sawicka-Chudy, Andrzej Wal, Maciej Sibiński, Piotr Potera, Rostyslaw Yavorskyi, Lyubomyr Nykyruy, Dariusz Płoch, Mariusz Bester, Marian Cholewa, and et al. 2023. "Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering" Applied Sciences 13, no. 6: 3613. https://doi.org/10.3390/app13063613
APA StyleWisz, G., Sawicka-Chudy, P., Wal, A., Sibiński, M., Potera, P., Yavorskyi, R., Nykyruy, L., Płoch, D., Bester, M., Cholewa, M., & Chernikova, O. M. (2023). Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering. Applied Sciences, 13(6), 3613. https://doi.org/10.3390/app13063613