Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of Aqueous Extracts
2.2. Phytochemical Analyses
2.3. Seed Germination Tests
2.4. Morphometric Analyses
2.5. Design of the Experiment and Statistical Analysis
3. Results
3.1. Results of Phytochemical Analyses of Aqueous Extracts
3.1.1. Chia (S. hispanica L.) Aqueous Extracts
3.1.2. Black Cumin (N. sativa L.) Aqueous Extracts
3.1.3. Wormwood Herbs (A. absinthium L.) Aqueous Extracts
3.1.4. Nettle (U. dioica L.) Aqueous Extracts
3.2. Results of Germination Tests and Morphometric Analyses of Seedlings
3.2.1. Germination Tests
3.2.2. Morphometric Analyses of Seedlings
Hypocotyl Length
Radicle Length
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Rice, E.L. Allelopathy. In Physiological Ecology; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1974; pp. 1–353. Available online: http://ndl.ethernet.edu.et/bitstream/123456789/43449/1/Elroy%20L.%20Rice.pdf (accessed on 5 February 2023).
- Xie, Y.; Tian, L.; Han, X.; Yang, Y. Research Advances in Allelopathy of Volatile Organic Compounds (VOCs) of Plants. Horticulturae 2021, 7, 278. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Allelopathy. In Fundamentals of Weed Science, 5th ed.; Academic Press: London, UK, 2018; pp. 253–270. [Google Scholar] [CrossRef]
- Pasquini, D.; dos Santos Nascimento, L.B.; Brunetti, C.; Ferrini, F.; Gleadow, R.M. Is the Invasiveness of Pittosporum undulatum in Eucalypt Forests Explained by the Wide Ranging Effects of Its Secondary Metabolites? Forests 2023, 14, 39. [Google Scholar] [CrossRef]
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using sandwich method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Farooq, M.; Bajwa, A.A.; Cheema, S.A.; Cheema, Z.A. Application of allelopathy in crop production. Int. J. Agric. Biol. 2013, 5, 1367–1378. [Google Scholar]
- Oueslati, O. Allelopathy in two durum wheat (Triticum durum L.) varieties. Agric. Ecosyst. Environ. 2003, 96, 161–163. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant Growth Regulator Mediated Consequences of Secondary Metabolites in Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Ridenour, W.M.; Callaway, R.M. The Relative Importance of Allelopathy in Interference: The Effects of an Invasive Weed on a Native Bunchgrass. Oecologia 2001, 126, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Khaliq, A.; Matloob, A.; Tanveer, A.; Hussain, A.; Zahir, Z.A. Allelopathy in agro-ecosystems: A critical review of wheat allelopathy-concepts and implications. Chemoecology 2017, 27, 1–24. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kaur, S. Crop Allelopathy and Its Role in Ecological Agriculture. J. Crop Prod. 2001, 4, 121–161. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tsuzuki, E.; Tawata, S.; Khanh, T.D. Methods to Determine Allelopathic Potential of Crop Plants for Weed Control. Allelopath. J. 2004, 13, 149–164. [Google Scholar]
- Klein, R.R.; Miller, D.A. Allelopathy and Its Role in Agriculture. Commun. Soil Sci. Plant Anal. 1980, 11, 43–56. [Google Scholar] [CrossRef]
- Schandry, N.; Becker, C. Allelopathic Plants: Models for Studying Plant–Interkingdom Interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Cheng, Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Norsworthy, J. Allelopathic Potential of Wild Radish (Raphanus raphanistrum). Weed Technol. 2003, 17, 307–313. [Google Scholar] [CrossRef]
- Garofulić, I.E.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Uzelac, V.D. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- Don, R. ISTA Handbook for Seedling Evaluation, 3rd ed.; International Seed Testing Association: Basserdorf, Switzerland, 2013. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2015. [Google Scholar]
- Hill, T.; Lewicki, P. Statistics: Methods and Applications; StatSoft, Inc.: Tulsa, OK, USA, 2006; Available online: https://books.google.hr/books?hl=en&lr=&id=TI2TGjeilMAC&oi=fnd&pg=PR15&dq=Hill,+T.%3B+Lewicki,+P.+Statistics:+metmeth+and+applications.+2006,+StatSoft,+Inc.,+Tulsa,+USA.+&ots=PAkDzkEG5u&sig=nGOwHTRa7_RCTi1wkl9cjnZDOf0&redre_esc=y#v=onepage&q&f=false (accessed on 5 February 2023).
- Anjum, A.; Hussain, U.; Yousaf, Z.; Khan, F.; Umer, A. Evaluation of Allelopathic Action of Some Selected Medicinal Plant on Lettuce Seeds by Using Sandwich Method. J. Med. Plant Res. 2010, 4, 536–541. [Google Scholar] [CrossRef]
- Nath, S.; Yumnam, P.; Deb, B. Allelopathic Effect of Lemon Plant Parts on the Seedling Germination and Growth of Lettuce and Cabbage. Int. J. Plant Biol. Res. 2016, 4, 1054. [Google Scholar]
- Kubo, I.; Matsumoto, A.; Taniguchi, M.; Wood, W.F. Combined Effect on Plant Growth of (-)-Ebpicatechin and Hydroquinone Compounds from Aesculus californica Nutt. (Hipocastanaceae). Chem. Pharm. Bull. 1985, 33, 3826–3828. [Google Scholar] [CrossRef]
- Kohli, R.K.; Singh, D. Allelopathic Impact of Volatile Components from Eucalyptus on Crop Plants. Biol. Plant. 1991, 33, 75–483. [Google Scholar] [CrossRef]
- Zohaib, A.; Ehsanullah, T.T.; Tabassum, T.; Abbas, T.; Rasool, R. Influence of Water Soluble Phenolics of Vicia sativa L. On Germination and Seedling Growth of Pulse Crops. Sci. Agri. 2014, 8, 148–151. [Google Scholar] [CrossRef]
- Zareen, S.; Fawad, M.; Haroon, M.; Ahmad, I.; Zaman, A. Allelopathic Potential of Summer Weeds on Germination and Growth Performance of Wheat and Chickpea. J. Nat. Pestic. Res. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Kumar, S.; Tayal, M.S. Effect of Phenols and Gibberellig Acid on the Germination and Seedling Growth of Some Legumes. J. Indian Bot. Soc. 1982, 61, 125–128. [Google Scholar]
- Edwards, M. Dormancy in Seeds of Charlock (Sinapis arvensis L.): Early Effects of Gibberellic Acid on the Synthesis of Amino Acids and Proteins. Plant Physiol. 1976, 58, 626–630. [Google Scholar] [CrossRef]
- Blinstrubienė, A.; Burbulis, N.; Ješkevičiūtė, N.; Vaitkevičienė, N.; Žūkienė, R. Effect of Growth Regulators on Stevia rebaudiana Bertoni Callus Genesis and Influence of Auxin and Proline to Steviol Glycosides, Phenols, Flavonoids Accumulation, and Antioxidant Activity In Vitro. Molecules 2020, 25, 2759. [Google Scholar] [CrossRef]
- John, J.; Sarada, S. Role of Phenolics in Allelopathic Interactions. Allelopath. J. 2012, 29, 215–230. [Google Scholar]
- Kefeli, V.I.; Kutacek, M. Phenolic Substances and Their Possible Role in Plant Growth Regulation. In Plant Growth Regulation. Proceedings in Life Sciences; Pilet, P.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar] [CrossRef]
- Ashfaq, M.; Verma, N.; Khan, S. Carbon nanofibers as a micronutrient carrier in plants: Efficient translocation and controlled release of Cu nanoparticles. Environ. Sci. Nano 2017, 4, 138–148. [Google Scholar] [CrossRef]
- Kumar, R.; Ashfaq, M.; Verma, N. Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: Controlled release of micronutrients. J. Mater. Sci. 2018, 53, 7150–7164. [Google Scholar] [CrossRef]
- Muscolo, A.; Panuccio, M.R.; Sidari, M. The Effect of Phenols on Respiratory Enzymes in Seed Germination Respiratory Enzyme Activities during Germination of Pinus laricio Seeds Treated with Phenols Extracted from Different Forest Soils. Plant Growth Regul. 2001, 35, 31–35. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Tinti, A.; Nardi, S. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism. Molecules 2016, 21, 205. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.U.; Kim, Y.M.; Lee, J.C. Herbicidal Potential and Quantification of Causative Allelochemicals from Several Compositae Weeds. Weed Res. 2003, 43, 444–450. [Google Scholar] [CrossRef]
- Chon, S.U.; Kim, D.K.; Kim, J.M.; Boo, H.O.; Kim, Y.J. Allelopathic Potential in Lettuce (Lactuca sativa L.) Plants. Sci. Hortic. 2005, 106, 309–317. [Google Scholar] [CrossRef]
- Tanase, C.; Bujor, O.C.; Popa, V.I. Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Souto, X.C.; González, L. Effect of Phenolic Compounds on the Germination of Six Weeds Species. Plant Growth Regul. 1999, 28, 83–88. [Google Scholar] [CrossRef]
Compound | Extract Concentration | ||
---|---|---|---|
2.5% | 5% | 10% | |
mg L−1 | |||
Epigallocatechin gallate | 0.06 ± 0.01 | 0.10 ± 0.01 | 0.11 ± 0.02 |
Quercetin 3-O-rhamnoside | 0.55 ± 0.03 | 0.02 ± 0.00 | 0.05 ± 0.02 |
Epicatechin gallate | 0.89 ± 0.02 | 0.73 ± 0.02 | 0.02 ± 0.01 |
Catechin | 0.18 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.02 |
Epicatechin | 6.70 ± 0.02 | 12.35 ± 0.06 | 0.05 ± 0.01 |
Kaempferol | 0.91 ± 0.02 | 0.81 ± 0.03 | 0.79 ± 0.04 |
Naringenin | 0.32 ± 0.03 | 0.19 ± 0.02 | 0.07 ± 0.02 |
Syringic acid | 0.96 ± 0.01 | 0.31 ± 0.03 | 0.41 ± 0.02 |
Ferrulic acid | 0.09 ± 0.02 | 0.36 ± 0.05 | 0.65 ± 0.04 |
Scopoletin | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.13 ± 0.03 |
Quinic acid | 0.83 ± 0.02 | 17.10 ± 0.01 | 130.52 ± 4.57 |
Caffeic acid | 2.32 ± 0.03 | 1.22 ± 0.04 | 0.75 ± 0.04 |
Esculetin | 9.44 ± 0.05 | 4.49 ± 0.01 | 2.68 ± 0.20 |
Gallic acid | 0.55 ± 0.01 | 0.50 ± 0.02 | 0.53 ± 0.06 |
p-Coumaric acid | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.20 ± 0.05 |
Umbelliferone | 0.25 ± 0.02 | 0.14 ± 0.01 | 0.71 ± 0.10 |
Gentisic acid | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.11 ± 0.03 |
Protocatechuic acid | 0.07 ± 0.01 | 0.02 ± 0.01 | 0.09 ± 0.01 |
Cinnamic acid | 7.12 ± 0.04 | 7.78 ± 0.02 | 4.84 ± 0.19 |
p-Hydroxybenzoic acid | 0.96 ± 0.03 | 0.82 ± 0.04 | 0.87 ± 0.09 |
Compound | Extract Concentration | ||
---|---|---|---|
2.5% | 5% | 10% | |
mg L−1 | |||
Epigallocatechin gallate | 0.06 ± 0.02 | 0.07 ± 0.03 | 0.08 ± 0.03 |
Quercetin 3-O-rhamnoside | 0.06 ± 0.03 | 0.05 ± 0.05 | 0.03 ± 0.02 |
Epicatechin gallate | 0.30 ± 0.06 | 0.86 ± 0.10 | 0.71 ± 0.21 |
Catechin | 0.04 ± 0.02 | 0.08 ± 0.07 | 0.10 ± 0.06 |
Epicatechin | 7.08 ± 0.36 | 11.78 ± 1.32 | 13.52 ± 1.21 |
Kaempferol | 1.40 ± 0.31 | 1.76 ± 0.22 | 0.91 ± 0.10 |
Naringenin | 0.23 ± 0.06 | 0.20 ± 0.09 | 0.30 ± 0.11 |
Syringic acid | 0.39 ± 0.08 | 0.82 ± 0.14 | 0.37 ± 0.09 |
Ferrulic acid | 0.17 ± 0.07 | 0.13 ± 0.03 | 0.43 ± 0.09 |
Scopoletin | 0.69 ± 0.13 | 0.20 ± 0.01 | 0.39 ± 0.17 |
Quinic acid | 0.79 ± 0.10 | 1.45 ± 0.32 | 8.82 ± 0.28 |
Caffeic acid | 2.36 ± 0.08 | 5.22 ± 0.09 | 5.37 ± 0.13 |
Esculetin | 4.47 ± 0.34 | 6.57 ± 0.21 | 4.87 ± 0.36 |
Gallic acid | 0.76 ± 0.12 | 0.67 ± 0.24 | 0.60 ± 0.15 |
p-Coumaric acid | 0.10 ± 0.04 | 0.09 ± 0.04 | 0.06 ± 0.02 |
Umbelliferone | 0.51 ± 0.22 | 0.52 ± 0.07 | 0.21 ± 0.06 |
Gentisic acid | 0.05 ± 0.04 | 0.03 ± 0.02 | 0.05 ± 0.04 |
Protocatechuic acid | 0.06 ± 0.04 | 0.03 ± 0.03 | 0.09 ± 0.07 |
Cinnamic acid | 1.24 ± 0.08 | 0.64 ± 0.10 | 1.35 ± 0.39 |
p-Hydroxybenzoic acid | 0.90 ± 0.09 | 1.30 ± 0.15 | 0.93 ± 0.08 |
Compound | Extract Concentration | ||
---|---|---|---|
2.5% | 5% | 10% | |
mg L−1 | |||
Epigallocatechin gallate | 0.09 ± 0.02 | 0.06 ± 0.01 | 0.07 ± 0.02 |
Quercetin 3-O-rhamnoside | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.02 |
Epicatechin gallate | 0.76 ± 0.07 | 0.64 ± 0.23 | 0.23 ± 0.06 |
Catechin | 0.07 ± 0.03 | 0.11 ± 0.08 | 0.09 ± 0.08 |
Epicatechin | 19.48 ± 0.96 | 20.18 ± 1.43 | 18.36 ± 1.65 |
Kaempferol | 1.72 ± 0.09 | 1.18 ± 0.37 | 1.27 ± 0.12 |
Naringenin | 0.37 ± 0.06 | 0.18 ± 0.12 | 0.17 ± 0.11 |
Syringic acid | 0.93 ± 0.12 | 0.62 ± 0.16 | 0.65 ± 0.20 |
Ferrulic acid | 0.30 ± 0.02 | 0.14 ± 0.05 | 0.24 ± 0.08 |
Scopoletin | 0.48 ± 0.02 | 0.47 ± 0.07 | 0.47 ± 0.21 |
Quinic acid | 1.00 ± 0.09 | 6.43 ± 0.60 | 7.04 ± 0.72 |
Caffeic acid | 0.09 ± 0.04 | 1.30 ± 0.05 | 0.27 ± 0.40 |
Esculetin | 2.36 ± 0.26 | 2.23 ± 0.55 | 13.17 ± 1.12 |
Gallic acid | 1.10 ± 0.11 | 1.07 ± 0.12 | 0.75 ± 0.11 |
p-Coumaric acid | 0.09 ± 0.02 | 0.18 ± 0.02 | 0.09 ± 0.01 |
Umbelliferone | 0.28 ± 0.17 | 0.33 ± 0.09 | 0.48 ± 0.07 |
Gentisic acid | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 |
Protocatechuic acid | 0.04 ± 0.01 | 0.04 ± 0.03 | 0.03 ± 0.03 |
Cinnamic acid | 2.77 ± 0.11 | 4.83 ± 0.23 | 8.20 ± 0.23 |
p-Hydroxybenzoic acid | 0.59 ± 0.51 | 1.43 ± 0.14 | 1.16 ± 0.18 |
Compound | Extract Concentration | ||
---|---|---|---|
2.5% | 5% | 10% | |
mg L−1 | |||
Epigallocatechin gallate | 0.09 ± 0.02 | 0.07 ± 0.02 | 0.09 ± 0.02 |
Quercetin 3-O-rhamnoside | 0.04 ± 0.02 | 0.74 ± 0.11 | 0.93 ± 0.10 |
Epicatechin gallate | 0.77 ± 0.15 | 0.47 ± 0.21 | 0.89 ± 0.15 |
Catechin | 0.14 ± 0.03 | 0.03 ± 0.02 | 0.24 ± 0.06 |
Epicatechin | 18.50 ± 1.78 | 14.45 ± 1.87 | 19.99 ± 2.06 |
Kaempferol | 0.94 ± 0.21 | 0.89 ± 0.16 | 0.96 ± 0.27 |
Naringenin | 0.19 ± 0.10 | 1.19 ± 0.03 | 0.11 ± 0.02 |
Syringic acid | 0.23 ± 0.07 | 0.30 ± 0.09 | 0.15 ± 0.01 |
Ferrulic acid | 0.25 ± 0.04 | 0.17 ± 0.04 | 0.67 ± 0.12 |
Scopoletin | 0.54 ± 0.06 | 0.34 ± 0.26 | 0.30 ± 0.16 |
Quinic acid | 0.93 ± 0.10 | 8.87 ± 0.79 | 10.67 ± 0.39 |
Caffeic acid | 0.04 ± 0.04 | 0.09 ± 0.09 | 0.76 ± 0.26 |
Esculetin | 5.11 ± 0.71 | 4.44 ± 0.43 | 7.15 ± 0.62 |
Gallic acid | 0.77 ± 0.19 | 0.49 ± 0.06 | 0.57 ± 0.05 |
p-Coumaric acid | 0.07 ± 0.01 | 0.09 ± 0.02 | 0.06 ± 0.00 |
Umbelliferone | 0.30 ± 0.12 | 0.16 ± 0.06 | 0.49 ± 0.06 |
Gentisic acid | 0.03 ± 0.02 | 0.03 ± 0.02 | 0.05 ± 0.04 |
Protocatechuic acid | 0.03 ± 0.03 | 0.02 ± 0.01 | 0.02 ± 0.01 |
Cinnamic acid | 0.88 ± 0.28 | 0.94 ± 0.17 | 6.13 ± 0.37 |
p-Hydroxybenzoic acid | 1.05 ± 0.19 | 1.02 ± 0.22 | 0.99 ± 0.15 |
Control (Not Treated) | 71.5 ± 5.74 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 61.0 ± 6.00 a | 64.0 ± 9.52 a | 64.5 ± 5.74 b | 55.5 ± 11.70 a |
5% | 66.5 ± 3.41 b | 64.0 ± 10.95 a | 57.5 ± 16.44 a | 43.5 ± 13.30 b |
10% | 65.5 ± 2.51 b | 52.5 ± 5.97 b | 31.5 ± 15.17 c | 0.0 ± 0.00 |
Control (Not Treated) | 93.0 ± 2.58 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 97 ± 1.15 b | 91.5 ± 5.74 n.s. | 90 ± 7.12 n.s. | 92.5 ± 3.41 n.s. |
5% | 90.0 ± 2.83 a | 90.5 ± 10.25 n.s. | 93 ± 1.11 n.s. | 90.5 ± 9.98 n.s. |
10% | 92 ± 4.89 c | 94.0 ± 2.83 n.s. | 86.5 ± 5.97 n.s. | 94.5 ± 1.91 n.s. |
Control (Not Treated) | 86.5 ± 5.74 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 98.5 ± 1.91 a | 94 ± 1.63 n.s. | 99 ± 1.15 a | 95 ± 4.16 a |
5% | 95 ± 2.58 c | 93 ± 2.00 n.s. | 94 ± 4.32 b | 16 ± 5.16 b |
10% | 96 ± 1.63 b | 91.5 ± 8.69 n.s. | 91 ± 5.03 c | 0.0 ± 0.00 |
Control (Not Treated) | 3.73 ± 0.29 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 2.225 ± 0.25 b | 2.20 ± 0.42 b | 2.47 ± 0.26 a | 1.85 ± 0.24 a |
5% | 2.42 ± 0.05 c | 2.37 ± 0.09 c | 1.90 ± 0.14 b | 1.73 ± 0.15 b |
10% | 2.17 ± 0.22 a | 2.075 ± 0.34 a | 1.72 ± 0.17 c | 0.0 ± 0.00 |
Control (Not Treated) | 3.40 ± 0.41 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 4.12 ± 0.37 n.s. | 4.55 ± 0.48 a | 3.72 ± 0.22 n.s. | 4.45 ± 0.13 a |
5% | 3.27 ± 0.43 n.s. | 4.57 ± 0.26 a | 3.60 ± 0.16 n.s. | 4.55 ± 0.40 a |
10% | 3.00 ± 0.41 n.s. | 3.60 ± 0.63 b | 3.32 ± 0.68 n.s. | 3.10 ± 0.40 b |
Control (Not Treated) | 2.30 ± 0.27 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 3.72 ± 0.66 b | 3.95 ± 0.17 c | 4.0 ± 0.32 c | 3.5 ± 0.6 a |
5% | 4.55 ± 0.57 c | 3.15 ± 0.33 a | 3.30 ± 0.14 b | 2.05 ± 1.37 a |
10% | 3.27 ± 0.40 a | 3.25 ± 0.52 b | 2.22 ± 0.43 a | 0.0 ± 0.00 |
Control (Not Treated) | 2.55 ± 0.24 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 2.30 ± 0.43 n.s. | 2.42 ± 0.26 a | 2.27 ± 0.67 a | 2.25 ± 0.30 a |
5% | 2.17 ± 0.39 n.s. | 1.65 ± 0.13 b | 2.5 ± 0.14 a | 1.15 ± 0.38 b |
10% | 2.15 ± 0.24 n.s. | 1.32 ± 0.57 c | 1.55 ± 0.49 b | 0.0 ± 0.00 |
Control (Not Treated) | 4.90 ± 1.34 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 5.92 ± 0.74 n.s. | 5.10 ± 1.07 a | 5.00 ± 1.08 n.s. | 3.92 ± 0.40 n.s. |
5% | 5.32 ± 0.86 n.s. | 3.67 ± 0.88 a | 4.07 ± 0.46 n.s. | 3.32 ± 1.13 n.s. |
10% | 4.30 ± 0.61 n.s. | 2.10 ± 0.27 b | 2.40 ± 0.42 n.s. | 2.85 ± 0.4 n.s. |
Control (Not Treated) | 1.77 ± 0.34 | |||
---|---|---|---|---|
Treatments | Chia (S. hispanica L.) | Black Cumin (N. sativa L.) | Wormwood Herbs (A. absinthium L.) | Nettle (U. dioica L.) |
2.5% | 2.92 ± 0.67 a | 3.37 ± 0.22 a | 3.05 ± 0.45 n.s. | 1.67 ± 0.30 a |
5% | 2.98 ± 1.08 b | 2.47 ± 0.59 b | 2.35 ± 0.31 n.s. | 0.57 ± 0.40 b |
10% | 2.25 ± 0.34 b | 1.77 ± 0.15 b | 1.30 ± 0.01 n.s. | 0.0 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erhatić, R.; Horvat, D.; Zorić, Z.; Repajić, M.; Jović, T.; Herceg, M.; Habuš, M.; Srečec, S. Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species. Appl. Sci. 2023, 13, 2258. https://doi.org/10.3390/app13042258
Erhatić R, Horvat D, Zorić Z, Repajić M, Jović T, Herceg M, Habuš M, Srečec S. Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species. Applied Sciences. 2023; 13(4):2258. https://doi.org/10.3390/app13042258
Chicago/Turabian StyleErhatić, Renata, Dijana Horvat, Zoran Zorić, Maja Repajić, Tanja Jović, Martina Herceg, Matea Habuš, and Siniša Srečec. 2023. "Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species" Applied Sciences 13, no. 4: 2258. https://doi.org/10.3390/app13042258
APA StyleErhatić, R., Horvat, D., Zorić, Z., Repajić, M., Jović, T., Herceg, M., Habuš, M., & Srečec, S. (2023). Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species. Applied Sciences, 13(4), 2258. https://doi.org/10.3390/app13042258