Radial Point Interpolation-Based Error Recovery Estimates for Finite Element Solutions of Incompressible Elastic Problems
Abstract
:1. Introduction
2. Radial Point Interpolation (RPI) Technique-Based Error Recovery
2.1. Multi-Quadrics Radial Basis Function (MQ)
2.2. Thin-Plate Splint Radial Basis Function (TPS)
3. Applications to Benchmark Examples
3.1. Incompressible-Elastic Square Plate
3.1.1. Effect of Influence-Zone Shape and Radial Basis Function and Its Shape Parameters in RPI-Based Error Recovery
3.1.2. Finite Error Distribution in Plate Domain
3.2. Infinite Incompressible-Elastic Plate with Rigid Circular Opening
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Finite Element Formulation for Incompressible Elasticity [30]
Appendix A.2. FiniteElement Errors and Adaptivity [26]
References
- Cen, S.; Wu, C.J.; Li, Z.; Shang, Y.; Li, C. Some advances in high-performance finite element methods. Eng. Comput. 2019, 36, 2811–2834. [Google Scholar] [CrossRef]
- Xu, J.P.; Rajendran, S. A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses. Comput. Mech. 2013, 51, 843–864. [Google Scholar] [CrossRef]
- Cen, S.; Fu, X.R.; Zhou, M.J. 8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput. Methods Appl. Mech. Eng. 2011, 200, 2321–2336. [Google Scholar] [CrossRef]
- Zhou, P.L.; Cen, S.; Huang, J.B.; Li, C.F.; Zhang, Q. An unsymmetric 8-node hexahedral element with high distortion tolerance. Int. J. Numer. Methods Eng. 2017, 109, 1130–1158. [Google Scholar] [CrossRef]
- Huang, J.B.; Cen, S.; Li, Z.; Li, C.F. An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: Linear formulations. Int. J. Numer. Methods Eng. 2018, 116, 759–783. [Google Scholar] [CrossRef]
- Brink, U.; Stein, E. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech. 1996, 19, 105–119. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, G.R. Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments. Arch. Comput. Methods Eng. 2018, 25, 397–435. [Google Scholar] [CrossRef]
- Karabelas, E.; Haase, G.; Plank, G.; Augustin, C.M. Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics. Comput. Mech. 2020, 65, 193–215. [Google Scholar] [CrossRef]
- Doll, S.; Schweizerhof, K.; Hauptmann, R.; Freischläger, C. On volumetric locking of low order solid and solid shell elements for finite elasto-viscoplastic deformations and selective reduced integration. Eng. Comput. 2000, 17, 874–902. [Google Scholar] [CrossRef]
- Boffi, D.; Stenberg, R. A remark on finite element schemes for nearly incompressible elasticity. Comput. Math. Appl. 2017, 74, 2047–2055. [Google Scholar] [CrossRef]
- Gültekin, O.; Dal, H.; Holzapfel, G.A. On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Comput. Mech. 2019, 63, 443–453. [Google Scholar] [CrossRef]
- Jarak, T.; Jalušić, B.; Sorić, J. Mixed Meshless Local Petrov-Galerkin Methods for Solving Linear Fourth-Order Differential Equations. Trans. FAMENA 2020, 44, 1–12. [Google Scholar] [CrossRef]
- Guo, H.; Xiey, C.; Zhao, R. Super-convergent gradient recovery for virtual element methods. Math. Model. Methods Appl. Sci. 2018, 29, 2007–2031. [Google Scholar] [CrossRef]
- Kaveh, A.; Seddighian, M.R. A New Nodal Stress Recovery Technique in Finite Element Method Using Colliding Bodies Optimization Algorithm. Period. Polytech. Civ. Eng. 2019, 63, 1159–1170. [Google Scholar] [CrossRef]
- Khan, A.; Powell, C.; Silvester, D. Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity. Int. J. Numer. Methods Eng. 2019, 119, 18–27. [Google Scholar] [CrossRef]
- Popișter, F.; Popescu, D.; Păcurar, A.; Păcurar, R. Mathematical Approach in Complex Surfaces Toolpaths. Mathematics 2021, 9, 1360. [Google Scholar] [CrossRef]
- Gratsch, T.; Bathe, K. A posteriori error estimation technique in practical finite element analysis. Comput. Struct. 2005, 83, 75–90. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Bashiri, A.H. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth. Materials 2022, 15, 7632. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhou, B.; Li, Y.; Xue, S. A Hermite interpolation element-free Galerkin method for elasticity problems. J. Mech. Mater. Struct. 2022, 17, 75–95. [Google Scholar] [CrossRef]
- Vogl, C.J.; Joseph, I.; Holec, M. Mesh Refinement for Anisotropic Diffusion in Magnetized Plasmas. arXiv 2022, arXiv:2210.16442. [Google Scholar] [CrossRef]
- Saikia, B.B.; Nath, D.; Gautam, S.S. Application of machine learning in efficient stress recovery in finite element analysis. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Karvonen, T.; Cirak, F.; Girolami, M. Error Analysis for a Statistical Finite Element Method. arXiv 2022, arXiv:2201.07543. [Google Scholar] [CrossRef]
- Ahmed, M. A Comparative Study of Mesh-Free Radial Point Interpolation Method and Moving Least Squares Method-Based Error Estimation in Elastic Finite Element Analysis. Arab. J. Sci. Eng. 2020, 45, 3541–3557. [Google Scholar] [CrossRef]
- Gong, J.; Zou, D.; Kong, X.; Qu, Y.; Zhou, Y. A Non-Matching Nodes Interface Model with Radial Interpolation Function for Simulating 2D Soil–Structure Interface Behaviors. Int. J. Comput. Methods 2020, 18, 2050023. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, L.; Yin, Y. New treatment of essential boundary conditions in EFG method by coupling with RPIM. Acta Mech. Solida Sin. 2013, 26, 302–316. [Google Scholar] [CrossRef]
- Ahmed, M.; Singh, D. An adaptive parametric study on mesh refinement during adaptive finite element simulation of sheet forming operations. Turk. J. Eng. Environ. Sci. 2008, 13, 163–175. [Google Scholar]
- Liu, G.R.; Gu, Y.T. A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J. Sound Vib. 2001, 246, 29–46. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.R. A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 2002, 54, 1623–1648. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Methods Appl. Mech. Eng. 2002, 191, 2611–2630. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Lui, Y.C.; Huang, G.C. Error Estimates and convergence rate for various incompressible elements. Int. J. Numer. Methods Eng. 1989, 28, 2192–2202. [Google Scholar] [CrossRef]
- Onate, E.; Perazzo, F.; Miquel, J. A finite point method for elasticity problems. Comput. Struct. 2001, 79, 2151–2163. [Google Scholar] [CrossRef]
- Li, X.D.; Wiberg, N.E. A posteriori Error Estimate by Element Patch Post-processing, Adaptive Analysis in Energy and L2 Norms. Comp. Struct. 1994, 53, 907–919. [Google Scholar] [CrossRef]
Mesh Size (1/h) | FEM Error (×10−3) | RPI (Influence Zone, MQ) | RPI (Conventional Patch, MQ) | LS (Conventional Patch) | |||
---|---|---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | ||
¼ | 29.44 | 8.30 | 0.96649 | 10.21 | 0.79000 | 15.95 | 0.90074 |
1/16 | 7.69 | 0.49 | 1.00823 | 0.72 | 0.98241 | 1.79 | 1.00184 |
1/32 | 3.85 | 0.12 | 1.00364 | 0.17 | 0.99637 | 0.49 | 1.00092 |
Conv. Rate | 0.97772 | 2.03291 | 1.97929 | 1.67400 |
Mesh Size (1/h) | FEM Error (×10−3) | RPI (Influence Zone, MQ) | RPI (Conventional Patch, MQ) | LS (Conventional Patch) | |||
---|---|---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | ||
¼ | 4.44 | 0.580 | 1.13369 | 6.927 | 1.87269 | 2.757 | 1.04939 |
1/8 | 1.11 | 0.054 | 1.19421 | 0.081 | 0.98104 | 0.702 | 1.01182 |
1/16 | 0.279 | 0.017 | 1.00075 | 0.018 | 0.99259 | 0.021 | 1.00111 |
Conv. Rate | 1.99607 | 3.53087 | 4.26621 | 2.54955 |
Mesh Size | FEM Error (×10−3) | RPI (Influence Zone, MQ) | RPI (Conventional Patch, MQ) | LS (Conventional Patch) | ||||
---|---|---|---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | |||
30 | 82 | 31.69 | 25.04 | 0.83372 | 25.05 | 0.79958 | 23.04 | 0.80883 |
615 | 1218 | 5.39 | 1.89 | 0.98982 | 1.96 | 0.99366 | 1.33 | 0.99778 |
2598 | 5798 | 2.73 | 0.86 | 0.98908 | 0.89 | 0.99317 | 0.57 | 1.00702 |
Mesh Size (1/h) | FEM Error (×10−3) | RPI (Circular Influence Zone, TPS, η = 4) | RPI (Conventional Patch, TPS, η = 4) | RPI (Rectangular Influence Zone, TPS) | |||
---|---|---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | ||
¼ | 29.44 | 13.16 | 0.96649 | 12.31 | 0.79461 | 13.29 | 0.83386 |
1/16 | 7.69 | 0.901 | 1.00823 | 0.914 | 0.98862 | 0.796 | 0.97836 |
1/32 | 3.85 | 0.234 | 1.00364 | 0.204 | 0.99450 | 0.161 | 0.99601 |
Conv. Rate | 0.97772 | 1.93875 | 1.97230 | 2.12271 |
Mesh Size | FEM Error (×10−3) | RPI (Circular Influence zone, TPS, η = 4) | RPI (Conventional Patch, TPS, η = 4) | RPI (Rectangular Influence Zone, TPS) | ||||
---|---|---|---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | |||
30 | 82 | 31.691 | 25.28 | 0.82779 | 25.017 | 0.79698 | 24.681 | 0.85763 |
615 | 1218 | 5.387 | 1.818 | 0.97268 | 1.900 | 0.98447 | 1.929 | 0.98678 |
2598 | 5798 | 2.732 | 0.852 | 0.98871 | 0.889 | 0.99513 | 0.907 | 0.99393 |
Mesh Size (1/h) | FEM Error (×10−3) | RPI (Circular Influence Zone, TPS, η = 5) | RPI (Conventional Patch, TPS, η = 5) | ||
---|---|---|---|---|---|
Error (×10−3) | Effectivity | Error (×10−3) | Effectivity | ||
¼ | 29.44 | 13.31 | 0.80100 | 11.31 | 0.85831 |
1/16 | 7.69 | 1.488 | 0.95403 | 1.204 | 0.98862 |
1/32 | 3.85 | 0.698 | 0.96364 | 0.555 | 0.94069 |
Conv. Rate | 0.97772 | 1.41784 | 1.46772 |
Recovery Type | Adaptive Analysis Results (Original Uniform Mesh with 615 Elements and 1218 DOF, 4% Target Error) | |||
---|---|---|---|---|
FEM Error | Projected Error | Adaptive Mesh Properties | ||
N | DOF | |||
LS (conventional patches) | 9.43 | 9.64 | 5629 | 11,520 |
RPI (influence zones-MQ-Cir.) | 9.43 | 9.26 | 5872 | 12,026 |
RPI (conventional patches-MQ) | 9.43 | 9.30 | 5606 | 11,490 |
RPI (influence zones-TSP-Cir.) | 9.43 | 9.13 | 5950 | 12,086 |
RPI (influence zones-TSP-Rect.) | 9.43 | 9.22 | 5454 | 11,186 |
RPI (conventional patches-TSP) | 9.43 | 9.23 | 5587 | 11,454 |
Mesh Size | FEM Error | RPI (Influence Zone, MQ) | RPI (Conventional Patch, MQ) | LS (Conventional Patch) | ||||
---|---|---|---|---|---|---|---|---|
Error | Effectivity | Error | Effectivity | Error | Effectivity | |||
233 | 534 | 0.1680 | 0.1071 | 0.88526 | 0.1148 | 0.81606 | 0.1177 | 1.03672 |
793 | 1698 | 0.0912 | 0.0584 | 0.98995 | 0.0604 | 0.98564 | 0.0516 | 1.02639 |
2467 | 5130 | 0.0546 | 0.0266 | 0.95198 | 0.0272 | 0.94467 | 0.0234 | 0.97784 |
Recovery Type | Adaptive Analysis Results (Original Uniform Mesh with 233 Elements and 534 DOF, 2% Target Error) | |||
---|---|---|---|---|
FEM Error | Projected Error | Adaptive Mesh Properties | ||
N | DOF | |||
LS (conventional patch) | 4.93 | 5.12 | 739 | 1586 |
RPI (Meshfree-MQ-Cir.) | 4.93 | 9.35 | 291 | 652 |
RPI (conventional patch-MQ) | 4.93 | 4.02 | 346 | 770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahla, N.B.; AlQadhi, S.; Ahmed, M. Radial Point Interpolation-Based Error Recovery Estimates for Finite Element Solutions of Incompressible Elastic Problems. Appl. Sci. 2023, 13, 2366. https://doi.org/10.3390/app13042366
Kahla NB, AlQadhi S, Ahmed M. Radial Point Interpolation-Based Error Recovery Estimates for Finite Element Solutions of Incompressible Elastic Problems. Applied Sciences. 2023; 13(4):2366. https://doi.org/10.3390/app13042366
Chicago/Turabian StyleKahla, Nabil Ben, Saeed AlQadhi, and Mohd. Ahmed. 2023. "Radial Point Interpolation-Based Error Recovery Estimates for Finite Element Solutions of Incompressible Elastic Problems" Applied Sciences 13, no. 4: 2366. https://doi.org/10.3390/app13042366
APA StyleKahla, N. B., AlQadhi, S., & Ahmed, M. (2023). Radial Point Interpolation-Based Error Recovery Estimates for Finite Element Solutions of Incompressible Elastic Problems. Applied Sciences, 13(4), 2366. https://doi.org/10.3390/app13042366