Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Physicochemical Properties
2.2. Soil Incubations
2.3. Cu Fractionation
2.4. Cu Leaching and Bioavailability
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemical Properties
3.2. Changes in Soil Chemical Properties
3.3. Changes in Soil Cu
3.3.1. Changes of Cu Speciation
Soil Type/Management | Step 1 | Step 2 | Step 3 | Step 4 | |
---|---|---|---|---|---|
Acid soils | Conventional | Cu (mg kg−1) | |||
Before incubation | 14.3 ± 0.5 b | 36.7 ± 1.9 b | 36.3 ± 1.2 a | 60.3 ± 0.8 b | |
19 °C 40% WHC | 16.7 ± 0.4 a | 43.2 ± 0.7 a | 38.1 ± 0.9 a | 61.4 ± 1.5 ab | |
19 °C 10% WHC | 16.8 ± 0.6 a | 42.1 ± 2.0 a | 38.1 ± 0.6 a | 61.8 ± 0.7 ab | |
29 °C 40% WHC | 17.1 ± 0.3 a | 44.6 ± 1.1 a | 39.3 ± 1.2 a | 64.0 ± 1.2 a | |
29 °C 10% WHC | 16.7 ± 0.7 a | 43.7 ± 1.7 a | 39.2 ± 1.5 a | 60.5 ± 1.4 b | |
Organic | |||||
Before incubation | 10.6 ± 0.2 a | 32.3 ± 1.5 a | 30.2 ± 1.5 a | 50.0 ± 13.3 a | |
19 °C 40% WHC | 8.6 ± 0.1 b | 33.9 ± 1.6 a | 33.2 ± 1.8 a | 57.6 ± 1.9 a | |
19 °C 10% WHC | 7.8 ± 0.1 b | 31.2 ± 3.9 a | 28.7 ± 3.4 a | 53.6 ± 3.4 a | |
29 °C 40% WHC | 8.0 ± 0.3 b | 32.8 ± 1.2 a | 32.2 ± 2.5 a | 57.7 ± 4.6 a | |
29 °C 10% WHC | 8.0 ± 0.6 b | 32.7 ± 0.7 a | 34.6 ± 4.7 a | 55.4 ± 2.3 a | |
Calcareous soils | Conventional | ||||
Before incubation | 1.5 ± 0.1 a | 16.4 ± 0.1 a | 13.4 ± 0.7 a | 73.2 ± 8.2 a | |
19 °C 40% WHC | 1.1 ± 0.1 b | 16.8 ± 0.3 a | 13.1 ± 0.3 a | 68.4 ± 1.6 a | |
19 °C 10% WHC | 1.1 ± 0.1 b | 17.3 ± 0.4 a | 11.1 ± 0.4 b | 68.8 ± 1.1 a | |
29 °C 40% WHC | 1.0 ± 0.1 b | 16.1 ± 0.1 a | 13.6 ± 0.9 a | 67.4 ± 1.1 a | |
29 °C 10% WHC | 1.0 ± 0.1 b | 16.4 ± 1.3 a | 11.3 ± 0.3 b | 69.5 ± 0.2 a | |
Organic | |||||
Before incubation | 5.3 ± 0.2 a | 45.3 ± 0.9 a | 32.3 ± 0.7 a | 44.5 ± 0.7 a | |
19 °C 40% WHC | 4.9 ± 0.1 ab | 43.5 ± 0.2 a | 20.6 ± 0.1 b | 48.5 ± 0.3 ab | |
19 °C 10% WHC | 4.9 ± 0.2 ab | 45.1 ± 0.9 a | 22.8 ± 0.4 b | 46.6 ± 3.8 ab | |
29 °C 40% WHC | 4.8 ± 0.2 b | 42.9 ± 1.2 a | 20.0 ± 1.9 b | 49.6 ± 1.2 b | |
29 °C 10% WHC | 4.8 ± 0.1 b | 45.0 ± 0.7 a | 22.9 ± 0.5 b | 47.0 ± 1.0 ab |
3.3.2. Changes of Cu Bioavailability
3.3.3. Changes of Cu Potential Leaching
3.4. Effect of Single or Combined Climatic Stress on Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Nations; Food and Agriculture Organization of the United: Rome, Italy, 2019. [Google Scholar]
- Pietrzak, U.; McPhail, D.C. Copper Accumulation, Distribution and Fractionation in Vineyard Soils of Victoria, Australia. Geoderma 2004, 122, 151–166. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper Distribution in European Topsoils: An Assessment Based on LUCAS Soil Survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. 2022. EC Data Browser. Organic Crop Area by Agricultural Production Methods and Crops. Available online: https://ec.europa.eu/eurostat/databrowser/view/org_cropar/default/table?lang=en (accessed on 3 February 2022).
- Yruela, I. Copper in Plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Cesco, S.; Pii, Y.; Borruso, L.; Orzes, G.; Lugli, P.; Mazzetto, F.; Genova, G.; Signorini, M.; Brunetto, G.; Terzano, R.; et al. A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Appl. Sci. 2021, 11, 907. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Rosa, D.J.; Bastos de Melo, G.W.; Zalamena, J.; Cella, C.; Simão, D.G.; Souza da Silva, L.; Pessoa dos Santos, H.; Toselli, M.; Tiecher, T.L.; et al. High Copper Content in Vineyard Soils Promotes Modifications in Photosynthetic Parameters and Morphological Changes in the Root System of ‘Red Niagara’ Plantlets. Plant Physiol. Biochem. 2018, 128, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Rosa, D.J.; Ambrosini, V.G.; Kokkoris, V.; Brunetto, G.; Hart, M.; Ricachenevsky, F.; Pescador, R. Lime Protection for Young Vines Exposed to Copper Toxicity. Water Air Soil Pollut. 2020, 231, 296. [Google Scholar] [CrossRef]
- Trentin, E.; Facco, D.B.; Hammerschmitt, R.K.; Avelar Ferreira, P.A.; Morsch, L.; Belles, S.W.; Ricachenevsky, F.K.; Nicoloso, F.T.; Ceretta, C.A.; Tiecher, T.L.; et al. Potential of Vermicompost and Limestone in Reducing Copper Toxicity in Young Grapevines Grown in Cu-Contaminated Vineyard Soil. Chemosphere 2019, 226, 421–430. [Google Scholar] [CrossRef]
- Longbottom, M.L.; Petrie, P.R. Role of Vineyard Practices in Generating and Mitigating Greenhouse Gas Emissions. Aust. J. Grape Wine Res. 2015, 21, 522–536. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg Env. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in Severe and Extreme Soil Moisture Droughts for Europe under Climate Change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Markkanen, T.; Venäläinen, A.; Räisänen, P.; Peltola, H. Seasonal Soil Moisture and Drought Occurrence in Europe in CMIP5 Projections for the 21st Century. Clim. Dyn. 2018, 50, 1177–1192. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic Warming Exacerbates European Soil Moisture Droughts. Nat. Clim Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K.; Grillakis, M.G.; Koutroulis, A.G.; Hessel, R.; Mayor, A.G.; Ritsema, C.J. Yield Response of Mediterranean Rangelands under a Changing Climate. Land Degrad. Dev. 2017, 28, 1962–1972. [Google Scholar] [CrossRef]
- Droz, B.; Payraudeau, S.; Rodríguez Martín, J.A.; Tóth, G.; Panagos, P.; Montanarella, L.; Borrelli, P.; Imfeld, G. Copper Content and Export in European Vineyard Soils Influenced by Climate and Soil Properties. Environ. Sci. Technol. 2021, 55, 7327–7334. [Google Scholar] [CrossRef]
- Wäldchen, J.; Schöning, I.; Mund, M.; Schrumpf, M.; Bock, S.; Herold, N.; Totsche, K.U.; Schulze, E.D. Estimation of Clay Content from Easily Measurable Water Content of Air-Dried Soil. J. Plant Nutr. Soil Sci. 2012, 175, 367–376. [Google Scholar] [CrossRef]
- Pérez-Novo, C.; Bermúdez-Couso, A.; López-Periago, E.; Fernández-Calviño, D.; Arias-Estévez, M. The Effect of Phosphate on the Sorption of Copper by Acid Soils. Geoderma 2009, 150, 166–170. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Díaz-Raviña, M.; Arias-Estévez, M. Copper Accumulation and Fractionation in Vineyard Soils from Temperate Humid Zone (NW Iberian Peninsula). Geoderma 2009, 153, 119–129. [Google Scholar] [CrossRef]
- Komárek, M.; Száková, J.; Rohošková, M.; Javorská, H.; Chrastný, V.; Balík, J. Copper Contamination of Vineyard Soils from Small Wine Producers: A Case Study from the Czech Republic. Geoderma 2008, 147, 16–22. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Sun, J.-Y.; Xu, X.-J.; Yu, H.-W. Distribution and Availability of Fungicide-Derived Copper in Soil Aggregates. J. Soils Sediments 2020, 20, 816–823. [Google Scholar] [CrossRef]
- Łukowski, A.; Dec, D. Influence of Zn, Cd, and Cu Fractions on Enzymatic Activity of Arable Soils. Environ. Monit. Assess. 2018, 190, 278. [Google Scholar] [CrossRef] [Green Version]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Quinteiro, P.; Rafael, S.; Gonçalves, C.; Moreira, M.T.; Feijoo, G.; Arroja, L.; Dias, A.C. Regionalizing Eco-Toxicity Characterization Factors for Copper Soil Emissions Considering Edaphic Information for Northern Spain and Portuguese Vineyards. Sci. Total Environ. 2019, 686, 986–994. [Google Scholar] [CrossRef] [PubMed]
- McBride, M. Environmental Chemistry of Soils 1994; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Costantini, E.A.C.; Agnelli, A.E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G. Short-Term Recovery of Soil Physical, Chemical, Micro- and Mesobiological Functions in a New Vineyard under Organic Farming. Soil 2015, 1, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Arrhenius, S. Über Die Reaktionsgeschwindigkeit Bei Der Inversion von Rohrzucker Durch Säuren. Z. Für Phys. Chem. 1889, 4, 226–248. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M. Temperature and Soil Organic Matter Decomposition Rates–Synthesis of Current Knowledge and a Way Forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Hamdi, S.; Moyano, F.; Sall, S.; Bernoux, M.; Chevallier, T. Synthesis Analysis of the Temperature Sensitivity of Soil Respiration from Laboratory Studies in Relation to Incubation Methods and Soil Conditions. Soil Biol. Biochem. 2013, 58, 115–126. [Google Scholar] [CrossRef]
- Schädel, C.; Beem-Miller, J.; Aziz Rad, M.; Crow, S.E.; Hicks Pries, C.E.; Ernakovich, J.; Hoyt, A.M.; Plante, A.; Stoner, S.; Treat, C.C. Decomposability of Soil Organic Matter over Time: The Soil Incubation Database (SIDb, Version 1.0) and Guidance for Incubation Procedures. Earth Syst. Sci. Data 2020, 12, 1511–1524. [Google Scholar] [CrossRef]
- Belmonte, S.A.; Luisella, C.; Stahel, R.J.; Bonifacio, E.; Novello, V.; Zanini, E.; Steenwerth, K.L. Effect of Long-Term Soil Management on the Mutual Interaction among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere 2018, 28, 288–298. [Google Scholar] [CrossRef]
- Šimanský, V.; Horváthová, J.; Jonczak, J.; Polláková, N. Suitability of Carbon and Nitrogen Management Indices for the Evaluation of Soil Organic Matter under Different Soil Management Practices in a Productive Vineyard. J. Ecol. Eng. 2021, 22, 150–162. [Google Scholar] [CrossRef]
- Morelli, R.; Bertoldi, D.; Baldantoni, D.; Zanzotti, R. Labile, Recalcitrant and Stable Soil Organic Carbon: Comparison of Agronomic Management in a Vineyard of Trentino (Italy). BIO Web Conf. 2022, 44, 02007. [Google Scholar] [CrossRef]
- Simončič, A.; Sušin, J.; Šinkovec, M.; Leskovšek, R.; Čuš, F.; Žnidaršič Pongrac, V.; Baša Česnik, H. Twelve-Year Investigation of Copper Soil Concentrations Shows That Vineyards Are at Risk. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 381–394. [Google Scholar] [CrossRef]
- Method 3052; Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. U.S. EPA: Washington, DC, USA, 1995.
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Hartley, I.P.; Ineson, P. Substrate Quality and the Temperature Sensitivity of Soil Organic Matter Decomposition. Soil Biol. Biochem. 2008, 40, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, A.J.; Weindorf, D.C. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures. Int. J. Anal. Chem. 2010, 2010, 387803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleyzes, C.; Tellier, S.; Astruc, M. Fractionation Studies of Trace Elements in Contaminated Soils and Sediments: A Review of Sequential Extraction Procedures. TrAC Trends Anal. Chem. 2002, 21, 451–467. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR Three Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- U.S. EPA. Test Methods for Evaluating Solid Wastes SW-846. In Volume IA-Laboratory Manual: Physical and Chemical Methods; United States Environmental Protection Agency: Washington, DC, USA, 1994. [Google Scholar]
- Novozamsky, I.; Lexmond, T.M.; Houba, V. A Single Extraction Procedure of Soil for Evaluation of Uptake of Some Heavy Metals by Plants. Int. J. Environ. Anal. Chem. 1993, 51, 47–58. [Google Scholar] [CrossRef]
- Vargha, A.; Delaney, H.D. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 2000, 25, 101–132. [Google Scholar]
- Irnawati, I.; Riswanto, F.D.O.; Riyanto, S.; Martono, S.; Rohman, A. The Use of Software Packages of R Factoextra and FactoMineR and Their Application in Principal Component Analysis for Authentication of Oils. Indones. J. Chemom. Pharm. Anal. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Rusjan, D.; Strlič, M.; Pucko, D.; Korošec-Koruza, Z. Copper Accumulation Regarding the Soil Characteristics in Sub-Mediterranean Vineyards of Slovenia. Geoderma 2007, 141, 111–118. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S. Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- SiStat. Surface Area, Number of Vineyards and Number of Seedlings in Relation to Grass Cover, Wine-Growing Regions and Regions; SiStat: Ljubljana, Slovenia, 2021. [Google Scholar]
- Gawlik, B.; Bidoglio, G. Background Values in European Soils and Sewage Sludges; European Communities: Brussels, Belgium, 2006. [Google Scholar]
- Pellegrini, E.; Rovere, N.; Zaninotti, S.; Franco, I.; De Nobili, M.; Contin, M. Artificial Neural Network (ANN) Modelling for the Estimation of Soil Microbial Biomass in Vineyard Soils. Biol. Fertil. Soils 2021, 57, 145–151. [Google Scholar] [CrossRef]
- Mejnih, U. Opozorilnih in Kritičnih Imisijskih Vrednostih Nevarnih Snovi v Tleh; Uradni List RS, Št. 68/96, 41/04—ZVO-1 in 44/22—ZVO-2; PIS: Ljubljana, Slovenia, 1996. [Google Scholar]
- Moinet, G.Y.; Hunt, J.E.; Kirschbaum, M.U.; Morcom, C.P.; Midwood, A.J.; Millard, P. The Temperature Sensitivity of Soil Organic Matter Decomposition Is Constrained by Microbial Access to Substrates. Soil Biol. Biochem. 2018, 116, 333–339. [Google Scholar] [CrossRef]
- Moinet, G.Y.; Moinet, M.; Hunt, J.E.; Rumpel, C.; Chabbi, A.; Millard, P. Temperature Sensitivity of Decomposition Decreases with Increasing Soil Organic Matter Stability. Sci. Total Environ. 2020, 704, 135460. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.A.; Trumbore, S.E.; Davidson, E.A.; Vicca, S.; Janssens, I. Sensitivity of Decomposition Rates of Soil Organic Matter with Respect to Simultaneous Changes in Temperature and Moisture. J. Adv. Model. Earth Syst. 2015, 7, 335–356. [Google Scholar] [CrossRef]
- Brunetto, G.; de Melo, G.W.B.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper Accumulation in Vineyard Soils: Rhizosphere Processes and Agronomic Practices to Limit Its Toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, D.; Zhang, B.; Huang, J. Concentration and Biodegradability of Dissolved Organic Carbon Derived from Soils: A Global Perspective. Sci. Total Environ. 2021, 754, 142378. [Google Scholar] [CrossRef]
- Marschner, B.; Bredow, A. Temperature Effects on Release and Ecologically Relevant Properties of Dissolved Organic Carbon in Sterilised and Biologically Active Soil Samples. Soil Biol. Biochem. 2002, 34, 459–466. [Google Scholar] [CrossRef]
- González-Domínguez, B.; Niklaus, P.A.; Studer, M.S.; Hagedorn, F.; Wacker, L.; Haghipour, N.; Zimmermann, S.; Walthert, L.; McIntyre, C.; Abiven, S. Temperature and Moisture Are Minor Drivers of Regional-Scale Soil Organic Carbon Dynamics. Sci. Rep. 2019, 9, 6422. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a Sustainable Viticulture: The Combination of Deficit Irrigation Strategies and Agroecological Practices in Mediterranean Vineyards. A Review and Update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Tóth, G.; Guicharnaud, R.-A.; Tóth, B.; Hermann, T. Phosphorus Levels in Croplands of the European Union with Implications for P Fertilizer Use. Eur. J. Agron. 2014, 55, 42–52. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; Luo, Y.; Zhou, G.; Kuang, Y.; Zhang, Y.; Heenan, M.; Lu, X.; Wen, D. Effects of Climate on Soil Phosphorus Cycle and Availability in Natural Terrestrial Ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, A.N.; Cleveland, C.C. The Effects of Temperature on Soil Phosphorus Availability and Phosphatase Enzyme Activities: A Cross-Ecosystem Study from the Tropics to the Arctic. Biogeochemistry 2020, 151, 113–125. [Google Scholar] [CrossRef]
- Gleyzes, C.; Tellier, S.; Astruc, M. Sequential Extraction Procedures for the Characterisation of the Fractionation of Elements in Industriallycontaminated Soils. In Methodologies for Soil and Sediment Fractionation Studies; Royal Society of Chemistry: London, UK, 2007; ISBN 978-1-84755-141-2. [Google Scholar]
- Reid, M.K.; Spencer, K.L.; Shotbolt, L. An Appraisal of Microwave-Assisted Tessier and BCR Sequential Extraction Methods for the Analysis of Metals in Sediments and Soils. J. Soils Sediments 2011, 11, 518–528. [Google Scholar] [CrossRef]
- Vázquez, F.A.V.; Cid, B.P.; Segade, S.R. Assessment of Metal Bioavailability in the Vineyard Soil-Grapevine System Using Different Extraction Methods. Food Chem. 2016, 208, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Alva, A.K.; Huang, B.; Paramasivam, S. Soil PH Affects Copper Fractionation and Phytotoxicity. Soil Sci. Soc. Am. J. 2000, 64, 955–962. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Sun, J.-Y.; Xu, X.-J.; Yu, H.-W. Integration of Chemical and Toxicological Tools to Assess the Bioavailability of Copper Derived from Different Copper-Based Fungicides in Soil. Ecotoxicol. Environ. Saf. 2018, 161, 662–668. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Pateiro, M.; López-Periago, E. Influence of aging on copper fractionation in an acid soil. Soil Sci. 2007, 172, 225. [Google Scholar] [CrossRef]
- SiStat. Consumption of Phytopharmaceuticals for Vineyards and Orchards (Kg) and Treated Area (Ha) by Active Substances; SiStat: Ljubljana, Slovenia, 2017. [Google Scholar]
- Milićević, T.; Relić, D.; Škrivanj, S.; Tešić, Ž.; Popović, A. Assessment of Major and Trace Element Bioavailability in Vineyard Soil Applying Different Single Extraction Procedures and Pseudo-Total Digestion. Chemosphere 2017, 171, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of Vineyard Soils with Fungicides: A Review of Environmental and Toxicological Aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Tóth, Z.; Táncsics, A.; Kriszt, B.; Kröel-Dulay, G.; Ónodi, G.; Hornung, E. Extreme Effects of Drought on Composition of the Soil Bacterial Community and Decomposition of Plant Tissue. Eur. J. Soil Sci. 2017, 68, 504–513. [Google Scholar] [CrossRef]
Soil Type | Acid Soils | Calcareous Soils | ||
---|---|---|---|---|
Soil Management | Conventional | Organic | Conventional | Organic |
pH | 5.1 ± 0.1 | 5.7 ± 0.1 | 7.5 ± 0.1 | 7.4 ± 0.1 |
Carbonates (mg kg−1) | <d.l. 1 | <d.l. | 36 | 118 |
Cu total (mg kg−1) | 143.3 ± 1.6 | 131.5 ± 4.9 | 105.3 ± 0.4 | 132.4 ± 2.3 |
TOC (g kg−1) | 17.7 ± 0.3 | 24.6 ± 0.6 | 22.8 ± 1.6 | 20.3 ± 0.7 |
TN (g kg−1) | 1.9 ± 0.1 | 2.9 ± 0.1 | 2.6 ± 0.2 | 1.8 ± 0.1 |
C:N | 9.1 ± 0.2 | 8.5 ± 0.1 | 8.6 ± 0.3 | 11.4 ± 0.8 |
DOC (mg kg−1) | 161.1 ± 12.7 | 110.4 ± 3.4 | 164.1 ± 5.8 | 187.2 ± 10.9 |
Olsen P (mg kg−1) | 75.4 ± 31.0 | 118.0 ± 0.5 | 8.3 ± 0.4 | 98.4 ± 8.8 |
N-NH4+ (mg kg−1) | 15.9 ± 1.5 | 15.1 ± 3.2 | 15.5 ± 4.1 | 37.1 ± 4.0 |
N-NO3− (mg kg−1) | 48.5 ± 10.5 | 64.4 ± 2.1 | 8.7 ± 0.9 | 55.9 ± 10.8 |
Texture category | Loam | Sandy Loam | Silty Clay Loam | Silty Clay Loam |
Sand (%) | 51 | 74 | 19 | 17 |
Silt (%) | 35 | 18 | 53 | 58 |
Clay (%) | 14 | 8 | 28 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jez, E.; Pellegrini, E.; Contin, M. Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress. Appl. Sci. 2023, 13, 2595. https://doi.org/10.3390/app13042595
Jez E, Pellegrini E, Contin M. Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress. Applied Sciences. 2023; 13(4):2595. https://doi.org/10.3390/app13042595
Chicago/Turabian StyleJez, Erika, Elisa Pellegrini, and Marco Contin. 2023. "Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress" Applied Sciences 13, no. 4: 2595. https://doi.org/10.3390/app13042595
APA StyleJez, E., Pellegrini, E., & Contin, M. (2023). Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress. Applied Sciences, 13(4), 2595. https://doi.org/10.3390/app13042595