Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Long-Term Experiment
2.2. Atmospheric Conditions
2.3. Measurement of CO2–C Soil Emissions
2.4. Plant Yields and Soil Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Carbon and Nitrogen Contents and pH Values
3.2. Dissolved Organic Carbon Content
3.3. CO2–C Soil Emissions
3.4. Relationship between CO2–C Soil Emissions and Environmental Factors
3.5. Plant Yields
4. Discussion
4.1. Soil Organic Carbon
4.2. CO2–C Soil Emission
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C sequestration as a biological negative emission strategy. Front. Clim. 2019, 1, 8. [Google Scholar] [CrossRef]
- Min, D.H.; Islam, K.R.; Vough, L.R.; Weil, R.R. Dairy manure effects on soil quality properties and carbon sequestration in alfalfa orchard grass systems. Commun. Soil Sci. Plant Anal. 2003, 34, 781–799. [Google Scholar] [CrossRef]
- Laik, R.; Kumara, B.H.; Pramanick, B.; Singh, S.K.; Nidhi; Alhomrani, M.; Gaber, A.; Hossain, A. Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition. Agronomy 2021, 11, 2190. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Wang, D.; Sun, X.; Hill, P.W.; Macdonald, A.; Chadwick, D.R.; Wu, L.; Jones, D.L. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol. Biochem. 2020, 144, 107760. [Google Scholar] [CrossRef]
- Lentz, R.D.; Lehrsch, G. Manure and Fertilizer effects on carbon balance and organic and inorganic carbon losses for an irrigated corn field. Soil Sci. Soc. Am. J. 2014, 73, 987–1002. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.P.; Rattan, R.K.; Chandra, S. Labile soil organic carbon, soil fertility, and crop productivity as influence by manure and mineral fertilizers in the tropics. J. Plant Nutr. Soil Sci. 2010, 173, 715–726. [Google Scholar] [CrossRef]
- Sleutel, S.; De Neve, S.; Németh, T.; Tóth, T.; Hofman, G. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments. Eur. J. Agron. 2006, 25, 280–288. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. 2011, 18, 601–609. [Google Scholar]
- Meena, S.C.; Singh, D.P.; Meena, S.R. Effect of long term application of fertilizer and manure on establish relationship between soil organic carbon fractions with yield of maize and wheat crops under maize-wheat sequence in Heplustepts. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 600–606. [Google Scholar]
- Wu, L.F.; Li, B.; Qin, Y.; Gregorich, E. Soil CO2 emission and carbon budget of a wheat/maiz annual double-cropped system in response to tillage and residue management in the North China Plain. Int. J. Agric. Sustain. 2017, 15, 253–263. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Cias, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil condition: Results from a meta-analysis. Biogeoscience 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Bilandžija, D.; Stuparić, R.; Galić, M.; Zgorelec, Ž.; Leto, J.; Bilandžija, N. Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings. Agronomy 2022, 12, 1426. [Google Scholar] [CrossRef]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 emissions in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Cantero-Martinez, C.; Alvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emission. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Dhadli, H.S.; Brar, B.S. Effect of long-term different application of inorganic fertilizers and manure on soil CO2 emissions. Plant Soil Environ. 2016, 62, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.; Jabro, J.D.; William, B.S. Soil carbon dioxide emissions and carbon content as affected by irrigation, tillage, cropping system and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Pramanick, B.; Kumar, M.; Naik, B.M.; Kumar, M.; Singh, S.K.; Maitra, S.; Naik, B.S.S.S.; Rajput, V.D.; Minkina, T. Long-Term Conservation Tillage and Precision Nutrient Management in Maize–Wheat Cropping System: Effect on Soil Properties, Crop Production, and Economics. Agronomy 2022, 12, 2766. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agric. Scand. B Soil Plant Sci. 2009, 59, 97–106. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob. Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E. CO2 emissions from soil under fodder maize cultivation. Agronomy 2020, 10, 1087. [Google Scholar] [CrossRef]
- Salehi, A.; Seyfollah, S.; Sourki, A.A. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass and growth of Nigella sativa L. Int. Agrophys. 2017, 31, 103–116. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Yagi, K.; Zheng, X. Soil respiration under maize crops: Effect of water, temperature and nitrogen fertilization. Soil Sci. Soc. Am. J. 2007, 71, 944–951. [Google Scholar] [CrossRef]
- Ray, R.; Griffin, R.W.; Elhassan, A.; Awal, R.; Woldesenbert, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Griscom, B.W. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 2022, 119, 23. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef] [Green Version]
- Andrés, P.; Doblas-Miranda, E.; Rovira, P.; Bonmatí, A.; Ribas, À.; Mattana, S.; Romanyà, J. Agricultural Potential in Carbon Sequestration. Humus Content of Land Used for Agriculture and CO2 Storage; Study Requested by the AGRI Committee; European Parliament, Policy Department for Structural and Cohesion Policies Directorate-General for Internal Policies: Brussels, Belgium, 2022; p. 699.655. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2022/699655/IPOL_STU(2022)699655_EN.pdf (accessed on 2 February 2023).
- Calamai, A.; Chiaramonti, D.; Casini, D.; Masoni, A.; Palchetti, E. Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth. Agriculture 2020, 10, 158. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2021, 11, 21. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Hutchinson, G.L.; Livingston, G.P. Use of chamber systems to measure trace gas fluxes. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; ASA Special Publication No. 55; Rolston, D.E., Duxbury, J.M., Harper, L.A., Mosier, A.R., Eds.; American Society of Agronomy, Crop Science Society of America and Soil Science Society of America: Madison, WI, USA, 1993; pp. 63–78. [Google Scholar]
- Bosco, S.; Volpi, I.; Antichi, D.; Ragaglini, G.; Frasconi, C. Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment. Agronomy 2019, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Zsolnay, A. Dissolved humus in soil waters. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; Chapter 4; pp. 171–223. [Google Scholar]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, M.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2012, 59, 1017–1040. [Google Scholar] [CrossRef]
- Körschens, M. The importance of long-term field experiments for soil science and environmental research—A review. Plant Soil Environ. 2006, 52, 1–8. [Google Scholar]
- Liu, W.; Yan, C.; Mei, X.; Zhang, Y.; Fan, T. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PLoS ONE 2013, 8, e56536. [Google Scholar] [CrossRef] [Green Version]
- Don, A.; Scholten, T.; Shulze, E.D. Conversion of cropland into grassland: Implication for soil organic carbon stocks in two soils with different texture. J. Plant. Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M.; Borawska-Komenda, M. Carbon and nitrogen leaching in long-term experiments and DOC/N-NO3- ratio in drainage water as an indicator of denitrification potential in different fertilization and crop rotation systems. Fresenius Environ. Bull. 2016, 25, 2813–2824. [Google Scholar]
- Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lesserd, R. Soluble organic carbon and carbon dioxide fluxes in maize fields. J. Environ. Qual. 1998, 27, 209–214. [Google Scholar] [CrossRef]
- Marinari, S.; Liburdi, K.; Fliessbach, A.; Kalbitz, K. Effects of organic management on water-extractable organic matter and C mineralization in European arable soil. Soil Till. Res. 2010, 106, 211–217. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B. Nitrous oxide and carbon dioxide emissions from monoculture and rotation cropping of corn, soybean and winter wheat. Can. J. Soil Sci. 2007, 88, 163–174. [Google Scholar] [CrossRef]
- Tang, X.; Du, J.; Shi, Y.; Lei, N.; Chen, G.; Cao, L.; Pei, H. Global patterns of soil heterotrophic respiration—A meta-analysis of available dataset. Catena 2020, 191, 104574. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Kadziene, G.; Vaideliene, A.; Povilaitis, V.; Deveikyte, I. CO2 fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agric. Scand. B Soil Plant Sci. 2011, 62, 311–328. [Google Scholar]
- Zhang, X.B.; Wu, L.; Sun, N.; Ding, X.; Li, J.; Wang, B.; Li, D. Soil CO2 and N2O emissions in maize growing season under different fertilizer regimes in upland red soil region of South China. J. Integr. Agric. 2014, 13, 604–614. [Google Scholar] [CrossRef]
- Alluvione, F.; Hall, V.; Orson, A.D.; Del Grosso, S.J. Nitrogen, Tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J. Environ. Qual. 2009, 38, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Liu, H.; Zhang, J.; Huang, J.; Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- DeForest, J.L.; Zak, D.R.; Pregitzer, K.S.; Burton, A.J. Atmospheric nitrate decomposition, microbial community composition, and enzyme activity in Northern Hardwood Forests. Soil Sci. Soc. Am. J. 2004, 68, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Verdi, L.; Mancini, M.; Napoli, M.; Violi, R.; Pardini, A.; Orlandini, S.; Marta, A.D. Soil carbon emissions from maize under different fertilization methods in an extremely dry summer in Italy. Ital. J. Agrometeorol. 2019, 2, 3–10. [Google Scholar]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Buragiené, S.; Šarauskis, E.; Romaneckas, K.; Sasnauskienė, J.; Masilionytè, L.; Kriaičiė, Z. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci. Total Environ. 2015, 514, 1–9. [Google Scholar] [CrossRef]
- Amos, B.; Arkebauer, T.J.; Doran, J.W. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci. Soc. Am. J. 2005, 69, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, J.; Li, X.; Wang, S.; Liu, W.; Shi, W.; Cao, W. Nitrogen fertilizer regulates soil respiration by altering the organic carbon storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibet Plateau. Sci. Rep. 2019, 9, 13735. [Google Scholar] [CrossRef] [Green Version]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constrains on belowground C dynamics. Ecol. Appl. Ecol. Soc. Am. 2000, 10, 399–411. [Google Scholar] [CrossRef]
- Fiedler, S.R.; Leinweber, P.; Jurasinski, G.; Eckhardt, K.U.; Glatzel, S. Tillage-induced short-term soil organic matter turnover and respiration. Soil 2016, 2, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.Q.; Zhou, X.H. Processes of CO2 transport from soil to the atmosphere. In Soil Respiration and the Environment; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 61–76. [Google Scholar]
- Lee, J.; McKnight, J.S.; Skinner, L.; Sherfy, A.; Tyler, D.; English, B. Soil Carbon Dioxide Respiration in Switchgrass Fields: Assessing Annual, Seasonal and Daily Flux Patterns. Soil Syst. 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; You, M.Y.; Shi, H.A.; Ding, X.L.; Qiao, Y.F.; Han, X.Z. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Biol. 2013, 55, 83–90. [Google Scholar] [CrossRef]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Skinulienė, L.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirbyste 2018, 105, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rahmann, M.M.; Biswas, J.C.; Miah, M.M.U.; Akhter, S.A.; Maniruzzaman, M.; Choudhury, A.K.; Ahmed, F.; Shiragi, M.H.K.; Kalra, N. Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. Int. J. Recycl. Org. Waste Agric. 2017, 6, 311–319. [Google Scholar] [CrossRef] [Green Version]
Treatment | Soil Horizons | SOC | TN | C:N | pH |
---|---|---|---|---|---|
g C kg−1 | g N kg−1 | ||||
CaNPK | Ap (0–25 cm) | 5.685 d ± 0.080 | 0.561 c ± 0.004 | 10.1:1 | 6.8 |
E (25–45 cm) | 1.565 a ± 0.041 | 0.181 a ± 0.001 | 8.7:1 | 6.2 | |
Bt (<45 cm) | 1.880 b ± 0.040 | 0.193 a ± 0.004 | 9.8:1 | 6.6 | |
Ca + M | Ap (0–25 cm) | 10.625 e ± 0.319 | 0.959 d ± 0.029 | 11.1:1 | 6.7 |
E (25–45 cm) | 2.035 b ± 0.016 | 0.194 a ± 0.002 | 10.5:1 | 6.3 | |
Bt (<45 cm) | 2.930 c ± 0.099 | 0.261 b ± 0.011 | 11.3:1 | 6.4 |
Treatment | Soil Horizons | 1st Year | 2nd Year | ||
---|---|---|---|---|---|
Spring | Autumn | Spring | Autumn | ||
CaNPK | Ap (0–25 cm) | 4.50 a ± 0.24 | 5.17 b ± 0.16 | 3.24 a ± 0.34 | 5.00 ab ± 0.84 |
E (26–45 cm) | 4.18 a ± 0.38 | 3.29 a ± 0.18 | 4.38 a ± 0.43 | 4.25 a ± 0.29 | |
Bt (<45cm) | 6.72 b ± 0.45 | 5.94 b ± 0.31 | 9.44 c ± 0.73 | 4.06 a ± 0.53 | |
Ca + M | Ap (0–25 cm) | 5.88 b ± 0.58 | 16.81 e ± 0.60 | 6.89 b ± 0.04 | 6.58 d ± 0.49 |
E (26–45 cm) | 6.82 b ± 0.63 | 8.21 c ± 0.68 | 13.01 d ± 1.92 | 4.89 ab ± 0.32 | |
Bt (<45cm) | 9.37 c ± 0.56 | 9.52 d ± 0.30 | 13.46 d ± 1.41 | 5.51 c ± 0.59 |
Treatment | 1st Year | 2nd Year | |||
---|---|---|---|---|---|
CO2–C Soil Emissions | |||||
Daily | Cumulative | Daily | Cumulative | ||
kg CO2–C ha−1 | |||||
CaNPK | Mean ± SD | 17.00 ± 16.39 | 3933.1 ± 356.6 | 16.01 ± 11.89 | 2975.0 ± 153.1 |
Median | 11.96 a | 3806.2 | 12.03 a | 2981.3 | |
Min–Max | 3.00–108.58 | 3519.3–4333.9 | 0.93–64.23 | 2773.2–3199.6 | |
Ca + M | Mean ± SD | 24.09 ± 15.37 | 5365.0 ± 113.9 | 27.56 ± 19.83 | 5149.2 ± 89.3 |
Median | 19.39 b | 5369.0 | 21.85 b | 5149.2 | |
Min–Max | 3.57–81.47 | 5212.0–5524.3 | 1.85–100.64 | 5062.1–5264.2 |
Year | Soil Organic Carbon | Spring | Autumn | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Dissolved Organic Carbon | ||||||||||
Ap | E | Bt | Ap | E | Bt | Ap | E | Bt | ||
1st | CO2–C soil emission | 0.79 * | 0.90 * | 0.71 * | 0.94 * | 0.64 * | 0.86 * | 0.75 * | 0.75 * | 0.78 * |
2nd | 0.81 * | 0.74 * | 0.66 * | 0.63 * | 0.70 * | 0.79 * | 0.68 * | 0.67 * | 0.66 * |
Crop Part | Treatment | 1st Year Yields (t ha−1) | 2nd Year Yields (t ha−1) |
---|---|---|---|
Grain | CaNPK | 2.76 b ± 0.17 | 3.04 b ± 0.21 |
Ca + M | 2.39 a ± 0.23 | 2.37 a ± 0.20 | |
Straw | CaNPK | 2.94 A ± 0.09 | 2.31 B ± 0.11 |
Ca + M | 2.83 A ± 0.27 | 1.87 A ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosulski, T.; Srivastava, A.K.; Ahrends, H.E.; Smreczak, B.; Szymańska, M. Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Appl. Sci. 2023, 13, 4620. https://doi.org/10.3390/app13074620
Sosulski T, Srivastava AK, Ahrends HE, Smreczak B, Szymańska M. Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Applied Sciences. 2023; 13(7):4620. https://doi.org/10.3390/app13074620
Chicago/Turabian StyleSosulski, Tomasz, Amit Kumar Srivastava, Hella Ellen Ahrends, Bożena Smreczak, and Magdalena Szymańska. 2023. "Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil" Applied Sciences 13, no. 7: 4620. https://doi.org/10.3390/app13074620
APA StyleSosulski, T., Srivastava, A. K., Ahrends, H. E., Smreczak, B., & Szymańska, M. (2023). Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Applied Sciences, 13(7), 4620. https://doi.org/10.3390/app13074620