Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MK/HAp Bio-Ceramic
2.3. Physicochemical Characterization
- σ = diametral tensile strength (DTS) [MPa],
- F = force causing the destruction of the specimen [N],
- D = diameter of the specimen [mm],
- T = thickness of the specimen [mm].
3. Results and Discussion
3.1. Phase Analysis
3.2. Morphology
3.3. Diametrical Tensile Strength (DTS) and Volume Shrinkage of MK/HAp Bio-Ceramic Body
3.4. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327. [Google Scholar] [CrossRef]
- Shekhawat, D.; Singh, A.; Banerjee, M.K.; Singh, T.; Patnaik, A. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram. Int. 2021, 47, 3013–3030. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davaie, S.; Hooshmand, T.; Ansarifard, S. Different types of bioceramics as dental pulp capping materials: A systematic review. Ceram. Int. 2021, 47, 20781–20792. [Google Scholar] [CrossRef]
- Cao, R.; Fang, Z.; Jin, M.; Shang, Y. Study on the Activity of Metakaolin Produced by Traditional Rotary Kiln in China. Minerals 2022, 12, 365. [Google Scholar] [CrossRef]
- Broda, E.; Skwarek, E. Clay, Hydroxyapatite and Their Composites—Brief Review. In Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications, Proceedings of the 7th International Conference Nanotechnology and Nanomaterials (NANO2019), Lviv, Ukraine, 27–30 August 2019; pp. 255–272. [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Mardziah, C.M.; Ramesh, S.; Wahid, M.A.; Chandran, H.; Sidhu, A.; Krishnasamy, S.; Purbolaksono, J. Effect of zinc ions on the structural characteristics of hydroxyapatite bioceramics. Ceram. Int. 2020, 46, 13945–13952. [Google Scholar] [CrossRef]
- Salman, S.; Gunduz, O.; Yilmaz, S.; Öveçoğlu, M.; Snyder, R.L.; Agathopoulos, S.; Oktar, F. Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium. Ceram. Int. 2009, 35, 2965–2971. [Google Scholar] [CrossRef]
- Broda, E.; Skwarek, E.; Payentko, V.V.; Gunko, V.M. Synthesis and selected physicochemical properties of hydroxyapatite and white clay composite. Physicochem. Probl. Miner. Process. 2019, 55, 1475–1483. [Google Scholar] [CrossRef]
- Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.-J. The Influence of X-ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation. Int. J. Artif. Organs 2005, 28, 66–73. [Google Scholar] [CrossRef]
- Bystrova, A.V.; Dekhtyar, Y.D.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics 2015, 475, 135–147. [Google Scholar] [CrossRef]
- Kroczek, K.; Turek, P.; Mazur, D.; Szczygielski, J.; Filip, D.; Brodowski, R.; Balawender, K.; Przeszłowski, Ł.; Lewandowski, B.; Orkisz, S.; et al. Characterisation of Selected Materials in Medical Applications. Polymers 2022, 14, 1526. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L.; Zhou, Z.; Luo, X.; Wang, T.; Zhao, X.; Lu, B.; Chen, F.; Zheng, L. Calcium Phosphate-Based Biomaterials for Bone Repair. J. Funct. Biomater. 2022, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Tavoni, M.; Dapporto, M.; Tampieri, A.; Sprio, S. Bioactive calcium phosphate-based composites for bone regeneration. J. Compos. Sci. 2021, 5, 227. [Google Scholar] [CrossRef]
- Ielo, I.; Calabrese, G.; de Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef] [PubMed]
- de Lama-Odría, M.d.C.; del Valle, L.J.; Puiggalí, J. Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int. J. Mol. Sci. 2022, 23, 11352. [Google Scholar] [CrossRef]
- Kargozar, S.; Mollazadeh, S.; Kermani, F.; Webster, T.J.; Nazarnezhad, S.; Hamzehlou, S.; Baino, F. Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J. Funct. Biomater. 2022, 13, 100. [Google Scholar] [CrossRef]
- Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, C.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef] [PubMed]
- Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M. The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef] [PubMed]
- Obada, D.O.; Dauda, E.T.; Abifarin, J.K.; Dodoo-Arhin, D.; Bansod, N.D. Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature. Mater. Chem. Phys. 2020, 239, 122099. [Google Scholar] [CrossRef]
- Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013, 9, 5855–5875. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Han, J.S.; Yang, J.H.; Lee, J.B.; Kim, S.H. The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J. Adv. Prosthodont. 2009, 1, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indurkar, A.; Choudhary, R.; Rubenis, K.; Locs, J. Advances in sintering techniques for calcium phosphates ceramics. Materials 2021, 14, 6133. [Google Scholar] [CrossRef]
- Puajindanetr, S.; Best, S.M.; Bonfield, W. Characterization and sintering of precipitated hydroxyapatite. Br. Ceram. Trans. 1994, 93, 96–99. [Google Scholar]
- Aarthy, S.; Thenmuhil, D.; Dharunya, G.; Manohar, P. Exploring the effect of sintering temperature on naturally derived hydroxyapatite for bio-medical applications. J. Mater. Sci. Mater. Med. 2019, 30, 21. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.F.; Chiou, S.Y.; Ou, K.L. Phase transformation on hydroxyapatite decomposition. Ceram. Int. 2013, 39, 3809–3816. [Google Scholar] [CrossRef]
- Ruys, A.J.; Wei, M.; Sorrell, C.C.; Dickson, M.R.; Brandwoods, A.; Milthomes, B.K. Sintering effects on the strength hydroxyapatite of hydroxyapatite. Biomaterials 1995, 16, 409–415. [Google Scholar] [CrossRef]
- Jamil, N.H.; Abdullah, M.; Pa, F.; Mohamad, H.; Ibrahim, W.; Amonpattaratkit, P.; Gondro, J.; Sochacki, W.; Ibrahim, N. Self-fluxing mechanism in geopolymerization for low-sintering temperature of ceramic. Materials 2021, 14, 1325. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F.; Lamanna, G. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer. Mater. Sci. Eng. C 2014, 36, 20–24. [Google Scholar] [CrossRef]
- Sunendar, B.; Fathina, A.; Harmaji, A.; Mardhian, D.F.; Asri, L.; Widodo, H.B. The effect of CHA-doped Sr addition to the mechanical strength of metakaolin dental implant geopolymer composite. AIP Conf. Proc. 2017, 1887, 020020. [Google Scholar] [CrossRef] [Green Version]
- Kaze, C.R.; Jiofack, S.B.K.; Cengiz, Ö.; Alomayri, T.S.; Adesina, A.; Rahier, H. Reactivity and mechanical performance of geopolymer binders from metakaolin/meta-halloysite blends. Constr. Build. Mater. 2022, 336, 127546. [Google Scholar] [CrossRef]
- Costa, L.M.; Almeida, N.G.S.; Houmard, M.; Cetlin, P.R.; Silva, G.J.B.; Aguilar, M.T.P. Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers. Appl. Clay Sci. 2021, 215, 106312. [Google Scholar] [CrossRef]
- Obada, D.O.; Osseni, S.A.; Sina, H.; Salami, K.A.; Oyedeji, A.N.; Dodoo-Arhin, D.; Bansod, N.D.; Csaki, S.; Atta, A.Y.; Fasanya, O.O.; et al. Fabrication of novel kaolin-reinforced hydroxyapatite scaffolds with robust compressive strengths for bone regeneration. Appl. Clay Sci. 2021, 215, 106298. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Zhang, H.; Li, M.; Wu, Y.; Guo, L.; Wang, W.; Duan, P.; Zhang, W.; Zhang, Z. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Appl. Clay Sci. 2020, 196, 105769. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Lee, W.H.; Liao, P.H. Using geopolymer technology on synthesizing leucite ceramics. Polymers 2021, 13, 3621. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ibrahim, W.M.W.; Abdullah, M.M.A.B.; Pakawanit, P.; Vizureanu, P.; Abdullah, A.S.; Sandu, A.V.; Zaidi, F.H.A. Geopolymer-Based Nepheline Ceramics: Effect of Sintering Profile on Morphological Characteristics and Flexural Strength. Crystals 2022, 12, 1313. [Google Scholar] [CrossRef]
- Kenne Diffo, B.B.; Elimbi, A.; Cyr, M.; Dika Manga, J.; Tchakoute Kouamo, H. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 2015, 3, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Tchakouté, H.K.; Fotio, D.; Rüscher, C.H.; Kamseu, E.; Djobo, J.N.; Bignozzi, M.C.; Leonelli, C. The effects of synthesized calcium phosphate compounds on the mechanical and microstructural properties of metakaolin-based geopolymer cements. Constr. Build. Mater. 2018, 163, 776–792. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.; Chon, C.M.; Cho, S. Setting Behavior and Phase Evolution on Heat Treatment of Metakaolin-Based Geopolymers Containing Calcium Hydroxide. Materials 2022, 15, 194. [Google Scholar] [CrossRef] [PubMed]
- Rubenis, K.; Zemjane, S.; Vecstaudza, J.; Bitenieks, J.; Locs, J. Densification of amorphous calcium phosphate using principles of the cold sintering process. J. Eur. Ceram. Soc. 2021, 41, 912–919. [Google Scholar] [CrossRef]
- Jurgelane, I.; Buss, A.; Putnina, M.; Loca, D.; Locs, J. Effect of sintering temperature on sorption properties and compressive strength of calcium phosphate ceramic granules. Mater. Lett. 2021, 282, 128858. [Google Scholar] [CrossRef]
- Sánchez-campos, D.; Valderrama, M.R.; López-Ortíz, S.; Salado-Leza, D.; Fernández-García, M.; Mendoza-Anaya, D.; Salinas-Rodríguez, E.; Rodríguez-Lugo, V. Modulated monoclinic hydroxyapatite: The effect of pH in the microwave assisted method. Minerals 2021, 11, 314. [Google Scholar] [CrossRef]
- Ma, G.; Liu, X.Y. Hydroxyapatite: Hexagonal or monoclinic? Cryst. Growth Des. 2009, 9, 2991–2994. [Google Scholar] [CrossRef]
- Morgan, H.; Wilson, R.M.; Elliott, J.C.; Dowker, S.E.P.; Anderson, P. Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 2000, 21, 617–627. [Google Scholar] [CrossRef]
- Chen, P.Y.; Wang, S.-F.; Chien, R.; Tu, C.-S.; Feng, K.-C.; Chen, C.-S.; Hung, K.-Y.; Schmidt, V.H. Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature. Ceram. Int. 2019, 45, 16226–16233. [Google Scholar] [CrossRef]
- Jamil, N.H.; Abdullah, M.M.A.B.; Che Pa, F.; Mohamad, H.; Ibrahim, W.M.A.W.; Chaiprapa, J. Influences of SiO2, Al2O3, CaO and MgO in phase transformation of sintered kaolin-ground granulated blast furnace slag geopolymer. J. Mater. Res. Technol. 2020, 9, 14922–14932. [Google Scholar] [CrossRef]
- ter Teo, P.; Anasyida, A.S.; Kho, C.M.; Nurulakmal, M.S. Recycling of Malaysia’s EAF steel slag waste as novel fluxing agent in green ceramic tile production: Sintering mechanism and leaching assessment. J. Clean. Prod. 2019, 241, 118144. [Google Scholar] [CrossRef]
- Khamkongkaeo, A.; Boonchuduang, T.; Klysubun, W.; Amonpattaratkit, P.; Chunate, H.-T.; Tuchinda, N.; Pimsawat, A.; Daengsakul, S.; Suksangrat, P.; Sailuam, W.; et al. Sintering behavior and mechanical properties of hydroxyapatite ceramics prepared from Nile Tilapia (Oreochromis niloticus) bone and commercial powder for biomedical applications. Ceram. Int. 2021, 47, 34575–34584. [Google Scholar] [CrossRef]
- Ramesh, S.; Aw, K.; Tolouei, R.; Amiriyan, M.; Tan, C.; Hamdi, M.; Purbolaksono, J.; Hassan, M.; Teng, W. Sintering properties of hydroxyapatite powders prepared using different methods. Ceram. Int. 2013, 39, 111–119. [Google Scholar] [CrossRef]
- Abdulsameea, N.; Hassaan, M.Y.; Rashed, O.; Soliman, I.E.; Tiama, T.M. Effect of Oxygen Plasma Treatment on Some Physical Properties of Nanoparticles Glass Ionomer Cement Doped With ZnO or TiO2. EC Dent. Sci. 2017, 13, 24–38. [Google Scholar]
- Es-saddik, M.; Laasri, S.; Laghzizil, A.; Guidara, A.; Chaari, K.; Bouaziz, J.; Banouni, H.; Hajjaji, A.; Taha, M. The densification and diametral compression strength of Hydroxyapatite-Zirconia bioceramics: Experimental and modelling studies. Mater. Today Proc. 2022, 52, 71–77. [Google Scholar] [CrossRef]
- Jithendra, C.; Dalawai, V.N.; Elavenil, S. Effects of metakaolin and sodium silicate solution on workability and compressive strength of sustainable Geopolymer mortar. Mater. Today Proc. 2022, 51, 1580–1584. [Google Scholar] [CrossRef]
Mix | Solid | Liquid (1:2) | L/S Ratio | Curing Condition | ||||
---|---|---|---|---|---|---|---|---|
Hap (g) | MK (g) | Total Solid (g) | 8 M NaOH (g) | Na2SiO3 (g) | Total Liquid (g) | Temperature/Time | ||
HM10-1.00 | 100 | 10 | 110 | 36.67 | 73.33 | 110.00 | 1.00 | 60 °C/2 d |
HM10-1.25 | 100 | 10 | 110 | 45.83 | 91.67 | 137.50 | 1.25 | 60 °C/2 d |
HM10-1.50 | 100 | 10 | 110 | 55.00 | 110.00 | 165.00 | 1.50 | 60 °C/2 d |
HM20-1.00 | 100 | 20 | 120 | 40.00 | 80.00 | 120.00 | 1.00 | 60 °C/2 d |
HM20-1.25 | 100 | 20 | 120 | 50.00 | 100.00 | 150.00 | 1.25 | 60 °C/2 d |
HM20-1.50 | 100 | 20 | 120 | 60.00 | 120.00 | 180.00 | 1.50 | 60 °C/2 d |
HM30-1.00 | 100 | 30 | 130 | 43.33 | 86.67 | 130.00 | 1.00 | 60 °C/2 d |
HM30-1.25 | 100 | 30 | 130 | 54.17 | 108.33 | 162.50 | 1.25 | 60 °C/2 d |
HM30-1.50 | 100 | 30 | 130 | 65.00 | 130.00 | 195.00 | 1.50 | 60 °C/2 d |
Chemical Composition (Compound) | CaO | P2O5 | Al2O3 | SiO2 | Na2O | TiO2 | Fe2O3 | MgO | K2O |
---|---|---|---|---|---|---|---|---|---|
HAp | 61.35 | 18.63 | 14.00 | 0.38 | 0.10 | - | - | 5.20 | - |
Metakaolin (MK) | - | - | 38.70 | 59.00 | 0.40 | 1.10 | 0.60 | - | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, W.M.A.W.; Abdullah, M.M.A.B.; Jamil, N.H.; Mohamad, H.; Salleh, M.A.A.M.; Sandu, A.V.; Vizureanu, P.; Baltatu, M.S.; Sukmak, P. Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic. Appl. Sci. 2023, 13, 2643. https://doi.org/10.3390/app13042643
Ibrahim WMAW, Abdullah MMAB, Jamil NH, Mohamad H, Salleh MAAM, Sandu AV, Vizureanu P, Baltatu MS, Sukmak P. Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic. Applied Sciences. 2023; 13(4):2643. https://doi.org/10.3390/app13042643
Chicago/Turabian StyleIbrahim, Wan Mohd Arif W., Mohd Mustafa Al Bakri Abdullah, Noorina Hidayu Jamil, Hasmaliza Mohamad, Mohd Arif Anuar Mohd Salleh, Andrei Victor Sandu, Petrica Vizureanu, Madalina Simona Baltatu, and Patimapon Sukmak. 2023. "Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic" Applied Sciences 13, no. 4: 2643. https://doi.org/10.3390/app13042643
APA StyleIbrahim, W. M. A. W., Abdullah, M. M. A. B., Jamil, N. H., Mohamad, H., Salleh, M. A. A. M., Sandu, A. V., Vizureanu, P., Baltatu, M. S., & Sukmak, P. (2023). Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic. Applied Sciences, 13(4), 2643. https://doi.org/10.3390/app13042643