Review: A Survey on Objective Evaluation of Image Sharpness
Abstract
:1. Introduction
2. Evaluation Methods and Analysis
2.1. Spatial Domain-Based Methods
2.1.1. Grayscale Gradient-Based Methods
2.1.2. Edge Detection-Based Methods
2.1.3. Other Methods Based on Spatial Domain
2.2. Spectral Domain-Based Methods
2.2.1. Fourier Transform-Based Methods
2.2.2. Wavelet Transform-Based Methods
2.3. Learning-Based Methods
2.3.1. Machine Learning-Based Methods
2.3.2. Deep Learning-Based Methods
2.3.3. Dictionary Learning-Based Methods
2.3.4. Other Methods Based on Learning
2.4. Combination Methods
3. Bibliometrics Analysis
3.1. Research Distribution Trend Analysis
3.2. The Performance of the Representative Methods on Public Datasets
3.2.1. Public Datasets and Evaluation Indicators
3.2.2. Performance Analysis of Representative Methods
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahajan, P.; Jakhetiya, V.; Abrol, P.; Lehana, P.K.; Guntuku, S.C. Perceptual quality evaluation of hazy natural images. IEEE Trans. Ind. Inform. 2021, 17, 8046–8056. [Google Scholar] [CrossRef]
- Li, Y.L.; Jiang, Y.J.; Yu, X.; Ren, B.; Wang, C.Y.; Chen, S.H.; Su, D.Y. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study. Front. Endocrinol. 2022, 13, 884306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Chen, H.; Wang, L.; Xiao, Y.J.; Huang, H.B. Color image segmentation using level set method with initialization mask in multiple color spaces. Int. J. Eng. Manuf. 2011, 1, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Dickmann, J.; Sarosiek, C.; Rykalin, V.; Pankuch, M.; Coutrakon, G.; Johnson, R.P.; Bashkirov, V.; Schulte, R.W.; Parodi, K.; Landry, G.; et al. Proof of concept image artifact reduction by energy-modulated proton computed tomography (EMpCT). Phys. Med. 2021, 81, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Yu, S.; Zhao, Y.M.; Tao, Z.; Yu, H.; Jin, L.B. Salient region guided blind image sharpness assessment. Sensors 2021, 21, 3963. [Google Scholar] [CrossRef]
- David, K.; Mehmet, C.; Xiaoping, A.S. State estimation based echolocation bionics and image processing based target pattern recognition. Adv. Sci. Technol. Eng. Syst. 2019, 4, 73–83. [Google Scholar]
- Ke, Z.X.; Yu, L.J.; Wang, G.; Sun, R.; Zhu, M.; Dong, H.R.; Xu, Y.; Ren, M.; Fu, S.D.; Zhi, C. Three-Dimensional modeling of spun-bonded nonwoven meso-structures. Polymers 2023, 15, 600. [Google Scholar] [CrossRef]
- Zhu, H.; Zhi, C.; Meng, J.; Wang, Y.; Liu, Y.; Wei, L.; Fu, S.; Miao, M.; Yu, L. A self-pumping dressing with multiple liquid transport channels for wound microclimate management. Macromol. Biosci. 2022, 23, 2200356. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Reduced- and no-reference image quality assessment. IEEE Signal Process. Mag. 2011, 28, 29–40. [Google Scholar] [CrossRef]
- Wu, Q.; Li, H.; Meng, F.; Ngan, K.N.; Zhu, S.Y. No reference image quality assessment metric via multi-domain structural information and piecewise regression. Vis. Commun. Image Represent. 2015, 32, 205–216. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, F.; Liu, T.; Jiang, Z.J.; Tao, D.C. No reference quality assessment for multiply-distorted images based on an improved bag-of-words model. IEEE Signal Process. Lett. 2015, 22, 1811–1815. [Google Scholar] [CrossRef]
- Cai, H.; Wang, M.J.; Mao, W.D.; Gong, M.L. No-reference image sharpness assessment based on discrepancy measures of structural degradation. J. Vis. Commun.. Image Represent. 2020, 71, 102861. [Google Scholar] [CrossRef]
- Qi, L.Z.; Zhi, C.; Meng, J.G.; Wang, Y.Z.; Liu, Y.M.; Song, Q.W.; Wu, Q.; Wei, L.; Dai, Y.; Zou, J.; et al. Highly efficient acoustic absorber designed by backing cavity-like and filled-microperforated plate-like structure. Mater. Des. 2023, 225, 111484. [Google Scholar] [CrossRef]
- Chen, G.; Zhai, M. Quality assessment on remote sensing image based on neural networks. J. Vis. Commun. Image Represent. 2019, 63, 102580. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Du, H. A no-reference objective image sharpness metric for perception and estimation. Sixth Int. Conf. Digit. Image Process. (ICDIP 2014) 2014, 915914, 1–7. [Google Scholar]
- Ferzli, R.; Karam, L.J. A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2009, 18, 717–728. [Google Scholar] [CrossRef]
- Qian, J.Y.; Zhao, H.J.; Fu, J.; Song, W.; Qian, J.D.; Xiao, Q.B. No-reference image sharpness assessment via difference quotients. Electron. Imaging 2019, 28, 013032. [Google Scholar] [CrossRef]
- Zhai, G.T.; Min, X.K. Perceptual image quality assessment: A survey. Sci. China Inf. Sci. 2020, 63, 211301. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Li, Q.; Lin, W.; Fang, Y. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 2016, 23, 541–545. [Google Scholar] [CrossRef]
- Bovik, A.C.; Liu, S. DCT-domain blind measurement of blocking artifacts in DCT-coded images. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 3, pp. 1725–1728. [Google Scholar]
- Hou, W.L.; Gao, X.B.; Tao, D.C.; Li, X.L. Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1275–1286. [Google Scholar] [PubMed]
- Zhang, Y.; Ngan, K.N.; Ma, L.; Li, H.L. Objective quality assessment of image retargeting by incorporating fidelity measures and inconsistency detection. IEEE Trans. Image Process. 2017, 26, 5980–5993. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N. An efficient image quality criterion in spatial domain. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar]
- Hong, Y.Z.; Ren, G.Q.; Liu, E.H. A no-reference image blurriness metric in the spatial domain. Opt.-Int. J. Light Electron. Opt. 2016, 127, 5568–5575. [Google Scholar] [CrossRef]
- Feichtenhofer, C.; Fassold, H.; Schallauer, P. A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Process. Lett. 2013, 20, 379–382. [Google Scholar] [CrossRef]
- Yan, X.Y.; Lei, J.; Zhao, Z. Multidirectional gradient neighbourhood-weighted image sharpness evaluation algorithm. Math. Probl. Eng. 2020, 1, 7864024. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Zhai, G.; Gu, K.; Yang, X.; Guan, X. Objective quality evaluation of dehazed images. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2879–2892. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Zhong, H.N.; Ai, Y.B.; Zhang, W.D. No-Reference image quality assessment based on image multi-scale contour prediction. Appl. Sci. 2022, 12, 2833. [Google Scholar] [CrossRef]
- Wang, T.G.; Zhu, L.; Cao, P.L.; Liu, W.J. Research on Vickers hardness image definition evaluation function. Adv. Mater. Res. 2010, 121, 134–138. [Google Scholar] [CrossRef]
- Dong, W.; Sun, H.W.; Zhou, R.X.; Chen, H.M. Autofocus method for SAR image with multi-blocks. J. Eng. 2019, 19, 5519–5523. [Google Scholar] [CrossRef]
- Jiang, S.X.; Zhou, R.G.; Hu, W.W. Quantum image sharpness estimation based on the Laplacian operator. Int. J. Quantum Inf. 2020, 18, 2050008. [Google Scholar] [CrossRef]
- Zeitlin, A.D.; Strain, R.C. Augmenting ADS-B with traffic information service-broadcast. IEEE Aerosp. Electron. Syst. Mag. 2003, 18, 13–18. [Google Scholar] [CrossRef]
- Zhan, Y.B.; Zhang, R. No-Reference image sharpness assessment based on maximum gradient and variability of gradients. IEEE Trans. Multimed. 2017, 20, 1796–1808. [Google Scholar] [CrossRef]
- Li, L.D.; Lin, W.S.; Wang, X.S.; Yang, G.B.; Bahrami, K.; Kot, A.C. No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 2015, 46, 39–50. [Google Scholar] [CrossRef]
- Zhang, K.N.; Huang, D.; Zhang, B.; Zhang, D. Improving texture analysis performance in biometrics by adjusting image sharpness. Pattern Recognit. 2017, 66, 16–25. [Google Scholar] [CrossRef]
- Sun, R.; Lei, T.; Chen, Q.; Wang, Z.X.; Du, X.G.; Zhao, W.Q. Survey of image edge detection. Front. Signal Process. 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, J.; Tang, Y.Y. Effective and fast estimation for image sensor noise via constrained weighted least squares. IEEE Trans. Image Process. 2018, 27, 2715–2730. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ji, X.Q.; Wang, M.J.; Sun, X.B. Edge detection algorithm of medical image based on Canny operator. J. Phys. Conf. Ser. 2021, 1955, 012080. [Google Scholar] [CrossRef]
- Ren, X.; Lai, S.N. Medical image enhancement based on Laplace transform, Sobel operator and Histogram equalization. Acad. J. Comput. Inf. Sci. 2022, 5, 48–54. [Google Scholar]
- Balochian, S.; Baloochian, H. Edge detection on noisy images using Prewitt operator and fractional order differentiation. Multimed. Tools Appl. 2022, 81, 9759–9770. [Google Scholar] [CrossRef]
- Marziliano, P.; Dufaux, F.; Winkler, S.; Ebrahimi, T. Perceptual blur and ringing metrics: Application to JPEG2000. Signal Process. Image Commun. 2004, 19, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.K.; Xiao, Q.Y.; Du, Y.; Zuo, X.Y. DSPI filtering evaluation method based on Sobel operator and image entropy. IEEE Photonics J. 2021, 13, 7800110. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Hong, H.J.; Gan, Z.H.; Wang, J.H.; Chen, Y.P. An improved method for evaluating image sharpness based on edge information. Appl. Sci. 2022, 12, 6712. [Google Scholar] [CrossRef]
- Chen, M.Q.; Yu, L.J.; Zhi, C.; Sun, R.J.; Zhu, S.W.; Gao, Z.Y.; Ke, Z.X.; Zhu, M.Q.; Zhang, Y.M. Improved faster R-CNN for fabric defect detection based on Gabor filter with genetic algorithm optimization. Comput. Ind. 2022, 134, 103551. [Google Scholar] [CrossRef]
- Bahrami, K.; Kot, A.C. A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process. Lett. 2014, 21, 751–755. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.T.; Lin, W.S.; Yang, X.K.; Zhang, W.J. No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 2015, 24, 3218–3231. [Google Scholar]
- Chang, H.W.; Zhang, Q.W.; Wu, Q.G.; Gan, Y. Perceptual image quality assessment by independent feature detector. Neurocomputing 2015, 151, 1142–1152. [Google Scholar] [CrossRef]
- Narvekar, N.D.; Karam, L.J. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 2011, 20, 2678–2683. [Google Scholar] [CrossRef]
- Lin, L.H.; Chen, T.J. A novel scheme for image sharpness using inflection points. Int. J. Imaging Syst. Technol. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Roysam, B. Blind quality metric for multidistortion images based on cartoon and texture decomposition. IEEE Signal Process. Lett. 2016, 23, 1265–1269. [Google Scholar] [CrossRef]
- Anju, M.; Mohan, J. Deep image compression with lifting scheme: Wavelet transform domain based on high-frequency subband prediction. Int. J. Intell. Syst. 2021, 37, 2163–2187. [Google Scholar] [CrossRef]
- Marichal, X.; Ma, W.Y.; Zhang, H. Blur determination in the compressed domain using DCT information. In Proceedings of the IEEE International Conference on Image Processing, Kobe, Japan, 24–28 October 1999; pp. 386–390. [Google Scholar]
- Mankar, R.; Gajjela, C.C.; Shahraki, F.F.; Prasad, S.; Mayerich, D.; Reddy, R. Multi-modal image sharpening in fourier transform infrared (FTIR) microscopy. The Analyst 2021, 146, 4822. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, C.F.; Guan, T.X.; Zhao, S.H. No-reference stereoscopic image quality assessment using quaternion wavelet transform and heterogeneous ensemble learning. Displays 2021, 69, 102058. [Google Scholar] [CrossRef]
- Pan, D.; Shi, P.; Hou, M.; Ying, Z.; Fu, S.; Zhang, Y. Blind predicting similar quality map for image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6373–6382. [Google Scholar]
- Golestaneh, S.A.; Chandler, D.M. No-reference quality assessment of JPEG images via a quality relevance map. IEEE Signal Process. Lett. 2014, 21, 155–158. [Google Scholar] [CrossRef]
- Kanjar, D.; Masilamani, V. Image sharpness measure for blurred images in frequency domain. Procedia Eng. 2013, 64, 149–158. [Google Scholar]
- Kanjar, D.; Masilamani, V. No-reference image sharpness measure using discrete cosine transform statistics and multivariate adaptive regression splines for robotic applications. Procedia Comput. Sci. 2018, 133, 268–275. [Google Scholar]
- Bae, S.H.; Kim, M. DCT-QM: A DCT-based quality degradation metric for image quality optimization problems. IEEE Trans. Image Process. 2016, 25, 4916–4930. [Google Scholar] [CrossRef]
- Bae, S.H.; Kim, M. A novel image quality assessment with globally and locally consilient visual quality perception. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2016, 25, 2392–2406. [Google Scholar] [CrossRef]
- Baig, M.A.; Moinuddin, A.A.; Khan, E.; Ghanbari, M. DFT-based no-reference quality assessment of blurred images. Multimed. Tools Appl. 2022, 81, 7895–7916. [Google Scholar] [CrossRef]
- Kerouh, F. A no reference quality metric for measuring image blur in wavelet domain. Int. J. Digit. Form. Wirel. Commun. 2012, 4, 803–812. [Google Scholar]
- Vu, P.V.; Chandler, D.M. A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Process. Lett. 2012, 19, 423–426. [Google Scholar] [CrossRef]
- Hassen, R.; Wang, Z.; Salama, M.A. Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 2013, 22, 2798–2810. [Google Scholar] [CrossRef]
- Gvozden, G.; Grgic, S.; Grgic, M. Blind image sharpness assessment based on local contrast map statistics. J. Vis. Commun. Image Represent. 2018, 50, 145–158. [Google Scholar] [CrossRef]
- Bosse, S.; Maniry, D.; Muller, K.R.; Samek, W. Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burges, C.; Shaked, T.; Renshaw, E. Learning to rank using gradient descent. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 7 August 2005; pp. 89–96. [Google Scholar]
- Ye, P.; Kumar, J.; Kang, L. Unsupervised feature learning framework for no-reference image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1098–1105. [Google Scholar]
- Pei, B.; Liu, X.; Feng, Z. A No-Reference image sharpness metric based on large-scale structure. J. Phys. Conf. 2018, 960, 012018. [Google Scholar] [CrossRef]
- Liu, L.; Gong, J.; Huang, H.; Sang, Q.B. Blind image blur metric based on orientation-aware local patterns. Signal Process.-Image Commun. 2020, 80, 115654. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 2010, 17, 513–516. [Google Scholar] [CrossRef]
- Kim, J.; Nguyen, A.D.; Lee, S. Deep CNN-based blind image quality predictor. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.L.; Ge, D.Y. Image quality assessment based on deep learning with FPGA implementation. Signal Process. Image Commun. 2020, 83, 115780. [Google Scholar] [CrossRef]
- Li, D.Q.; Jiang, T.T.; Jiang, M. Exploiting high-level semantics for no-reference image quality assessment of realistic blur images. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 378–386. [Google Scholar]
- Lin, K.Y.; Wang, G.X. Hallucinated-IQA: No-reference image quality assessment via adversarial learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 732–741. [Google Scholar]
- Zhang, W.X.; Ma, K.D.; Yan, J.; Deng, D.X.; Wang, Z. Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Celona, L.; Napoletano, P.; Schettini, R. On the use of deep learning for blind image quality assessment. Signal Image Video Process. 2018, 12, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Yu, J.; Zhu, S.G.; Huang, Q.M.; Tian, Q. Blind image quality prediction by exploiting multi-level deep representations. Pattern Recognit. 2018, 81, 432–442. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Wu, J.; Li, H.L.; Lin, W.S.; Kot, A.C. Image sharpness assessment by sparse representation. IEEE Trans. Multimed. 2016, 18, 1085–1097. [Google Scholar] [CrossRef]
- Lu, Q.B.; Zhou, W.G.; Li, H.Q. A no-reference image sharpness metric based on structural information using sparse representation. Inf. Sci. 2016, 369, 334–346. [Google Scholar] [CrossRef]
- Xu, J.T.; Ye, P.; Li, Q.H.; Du, H.Q.; Liu, Y.; Doermann, D. Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 2016, 25, 4444–4457. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.P.; Shao, F.; Lin, W.S.; Gu, K.; Jiang, G.Y.; Sun, H.F. Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans. Multimed. 2018, 20, 2035–2048. [Google Scholar] [CrossRef]
- Wu, Q.B.; Li, H.L.; Ngan, K.; Ma, K.D. Blind image quality assessment using local consistency aware retriever and uncertainty aware evaluator. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2078–2089. [Google Scholar] [CrossRef]
- Deng, C.W.; Wang, S.G.; Li, Z.; Huang, G.B.; Lin, W.S. Content-insensitive blind image blurriness assessment using Weibull statistics and sparse extreme learning machine. IEEE Trans. Syst. Man Cybern.-Syst. 2019, 49, 516–527. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, H.Q.; Tan, F.F.; Chen, W.J.; Wu, Z.R. No-reference image sharpness assessment based on rank learning. In Proceedings of the 2019 International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2359–2363. [Google Scholar]
- He, S.Y.; Liu, Z.Z. Image quality assessment based on adaptive multiple Skyline query. Signal Process.-Image Commun. 2019, 80, 115676. [Google Scholar] [CrossRef]
- Vu, C.T.; Phan, T.D.; Chandler, D.M. S3: A spectral and spatial measure of local perceived sharpness in natural image. IEEE Trans. Image Process. 2012, 21, 934–945. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jin, Z.H.; Jiang, H.; Miao, X.R.; Chen, J.; Lin, Z.C. Quality assessment for inspection images of power lines based on spatial and sharpness evaluation. IET Image Process. 2022, 16, 356–364. [Google Scholar] [CrossRef]
- Yue, G.H.; Hou, C.P.; Gu, K.; Zhou, T.W.; Zhai, G.T. Combining local and global measures for DIBR-Synthesized image quality evaluation. IEEE Trans. Image Process. 2018, 28, 2075–2088. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Xu, X.H.; Li, L.; Chang, C.C. No-reference image blur assessment based on response function of singular values. Symmetry 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Zhang, R.; Wu, Q. A structural variation classification model for image quality assessment. IEEE Trans. Multimed. 2017, 19, 1837–1847. [Google Scholar] [CrossRef]
- Li, D.Q.; Jiang, T.T.; Lin, W.S.; Jiang, M. Which has better visual quality: The clear blue sky or a blurry animal? IEEE Trans. Onmultimedia 2019, 21, 1221–1234. [Google Scholar] [CrossRef]
- Li, Y.; Po, L.M.; Xu, X. No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing 2015, 154, 94–109. [Google Scholar] [CrossRef]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Ponomarenko, N.; Lukin, V.; Zelensky, A. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radio Electron. 2009, 10, 30–45. [Google Scholar]
- Ponomarenko, N.; Ieremeiev, O.; Lukin, V. Color image database TID2013: Peculiarities and preliminary results. In Proceedings of the European Workshop on Visual Information Processing (EUVIP), Paris, France, 10–12 June 2013; pp. 106–111. [Google Scholar]
- Ciancio, A.; Da, S.; Said, A.; Obrador, P. No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans. Image Process. 2011, 20, 64–75. [Google Scholar] [CrossRef]
- Virtanen, T.; Nuutinen, M.; Vaahteranoksa, M.; Oittinen, P. CID2013: A database for evaluating no-reference image quality assessment algorithms. IEEE Trans. Image Process. 2015, 24, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Varga, D. No-Reference quality assessment of authentically distorted images based on local and global features. J. Imaging 2022, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Li, L.D.; Xia, W.H.; Wang, S.Q. No-Reference and robust image sharpness evaluation based on multiscale spatial and spectral features. IEEE Trans. Multimed. 2017, 19, 1030–1040. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Grayscale gradient-based methods | Simple and fast calculation | Rely on image edge information |
Edge detection-based methods | High sensitivity | Susceptible to noise |
Fourier transform-based methods | Extract edge features clearly | High computational complexity |
Wavelet transform-based methods | High accuracy and robustness | High computational complexity and poor real-time performance |
Methods | Advantages | Disadvantages |
---|---|---|
Machine-based methods | Good performance on small sample training set | Evaluation results depend on feature extraction. |
Deep learning-based methods | Automatically train learning features from a large number of samples | A large amount of data |
Dictionary learning-based methods | Advanced features of samples can be extracted. | The evaluation effect depends on dictionary size. |
Group | Method Category | Method | Published Time | Characteristic |
---|---|---|---|---|
Spatial domain-based | Grayscale gradient-based | MLV [46] | 2014 | Calculate the maximum local change in the image |
Grayscale gradient-based | BIBLE [35] | 2015 | Calculate gradients and Tchebichef moments of images | |
Edge detection-based | MGV [46] | 2018 | Calculate the maximum gradient and gradient change in the image | |
Other spatial domain-based | ARISM [47] | 2014 | Calculate the energy difference and contrast difference of the AR model coefficients for each pixel | |
Other spatial domain-based | CPBD [49] | 2011 | Calculate the cumulative probability of blur detection | |
Spectral domain-based | Fourier transform-based | DCT-QM [60] | 2016 | Compute the weighted average L2 norm in the DCT domain. |
Fourier transform-based | SC-QI [61] | 2016 | Structural contrast indices and DCT blocks are employed to characterize local image features and visual quality perception properties of various distortion types. | |
Fourier transform-based | FISH [62] | 2022 | Compute image derivatives and block-based DFT | |
Wavelet transform-based | LPC-SI [65] | 2013 | Calculate LPC intensity change | |
Wavelet transform-based | BISHARP [66] | 2018 | Calculate the root mean square of the image to obtain local contrast information | |
Learning-based | Machine-based | BIQI [72] | 2010 | The NSS model was used to parameterize the sub-band coefficients and to predict the sharpness values. |
Deep learning-based | DB-CNN [77] | 2020 | Distorted images use two convolutional neural networks for feature extraction and bilinear pooling for quality prediction. | |
Deep learning-based | DeepBIQ [78] | 2018 | Use features extracted from pretrained CNN as generic image descriptions. | |
Dictionary learning-based | SPARISH [79] | 2016 | The image is represented as a block using a dictionary, and the energy of the block is calculated using the sparse coefficient, then normalized by the pooling layer to obtain a sharpness evaluation score. | |
Dictionary learning-based | SR [81] | 2016 | Sparse representation (SR) is used to extract structural information, and a multi-scale spatial max-pooling scheme is introduced to represent image locality. | |
Other learning-based | MSFF [87] | 2019 | Taking multiple features of the image as input and learn feature weights through end-to-end training to obtain evaluations | |
Combination | Graycale + DCT | S3 [88] | 2012 | Calculate the slope of the magnitude spectrum in the spectral domain and the spatial variation in the spatial domain of the image patch |
DCT + SIFT | RFSV [91] | 2016 | The blocks that compute the gradient maps are converted to DCT coefficients to obtain shape information, and scale-invariant feature transform (SIFT) is used to obtain saliency maps. | |
SVC + Gradient | SVC [92] | 2017 | Image quality is characterized using the distribution of different structural changes and the extent of structural differences. | |
DCNN + SFA | SFA [93] | 2019 | The pre-trained DCNN model is used to extract features, and after feature aggregation, the least squares regression is partially used for quality prediction. |
Dataset | Distortion Type | Number of Reference Images | Number of Distorted Images | Image Size (Pixel) | Subjective Scoring | Score Range |
---|---|---|---|---|---|---|
LIVE | Analog distortion | 29 | 779 | 428 × 634–512 × 768 | DMOS | [1, 100] |
CSIQ | Analog distortion | 30 | 866 | 512 × 512 | DMOS | [0, 9] |
TID2008 | Analog distortion | 25 | 1700 | 512 × 384 | MOS | [0, 9] |
TID2013 | Analog distortion | 25 | 3000 | 512 × 384 | MOS | [0, 9] |
BID | Natural distortion | - | 585 | 1280 × 960–2272 × 1704 | MOS | [0, 5] |
CID2013 | Natural distortion | - | 480 | 1600 × 1200 | MOS | [0, 100] |
Group | Method | LIVE | CSIQ | ||
---|---|---|---|---|---|
PLCC | SROCC | PLCC | SROCC | ||
Spatial domain-based | MLV [46] | 0.938 | 0.937 | 0.894 | 0.851 |
BIBLE [35] | 0.962 | 0.961 | 0.940 | 0.913 | |
MGV [46] | 0.960 | 0.963 | 0.907 | 0.950 | |
ARISM [47] | 0.959 | 0.956 | 0.948 | 0.931 | |
CPBD [49] | 0.895 | 0.918 | 0.882 | 0.885 | |
Spectral domain-based | DCT-QM [60] | 0.925 | 0.938 | 0.872 | 0.926 |
SC-QI [61] | 0.937 | 0.948 | 0.927 | 0.943 | |
FISH [62] | 0.904 | 0.841 | 0.923 | 0.894 | |
LPC-SI [65] | 0.922 | 0.950 | 0.906 | 0.893 | |
BISHARP [66] | 0.952 | 0.960 | 0.942 | 0.927 | |
Learning-based | BIQI [72] | 0.920 | 0.914 | 0.846 | 0.773 |
DB-CNN [77] | 0.970 | 0.968 | 0.959 | 0.946 | |
DeepBIQ [78] | 0.912 | 0.893 | 0.975 | 0.967 | |
SPARISH [79] | 0.956 | 0.959 | 0.938 | 0.914 | |
SR [81] | 0.961 | 0.955 | 0.950 | 0.921 | |
MSFF [87] | 0.949 | 0.950 | - | - | |
Combination | S3 [88] | 0.943 | 0.944 | 0.893 | 0.911 |
RFSV [91] | 0.974 | 0.971 | 0.942 | 0.920 | |
SVC [92] | 0.949 | 0.941 | 0.952 | 0.954 | |
SFA [93] | 0.942 | 0..953 | - | - |
Group | Method | TID2008 | TID2013 | ||
---|---|---|---|---|---|
PLCC | SROCC | PLCC | SROCC | ||
Spatial domain-based | MLV [46] | 0.811 | 0.812 | 0.883 | 0.879 |
BIBLE [35] | 0.893 | 0.892 | 0.905 | 0.898 | |
MGV [46] | 0.937 | 0.942 | 0.914 | 0.921 | |
ARISM [47] | 0.854 | 0.868 | 0.898 | 0.902 | |
CPBD [49] | 0.824 | 0.841 | 0.855 | 0.852 | |
Spectral domain-based | DCT-QM [60] | 0.819 | 0.837 | 0.852 | 0.854 |
SC-QI [61] | 0.890 | 0.905 | 0.907 | 0.905 | |
FISH [62] | 0.816 | 0.786 | 0.911 | 0.912 | |
LPC-SI [65] | 0.846 | 0.843 | 0.892 | 0.889 | |
BISHARP [66] | 0.877 | 0.880 | 0.892 | 0.896 | |
Learning-based | BIQI [72] | 0.794 | 0.799 | 0.825 | 0.815 |
DB-CNN [77] | 0.873 | 0.859 | 0.865 | 0.816 | |
DeepBIQ [78] | 0.951 | 0.952 | 0.920 | 0.922 | |
SPARISH [79] | 0.889 | 0.887 | 0.900 | 0.893 | |
SR [81] | 0.895 | 0.911 | 0.899 | 0.892 | |
MSFF [87] | 0.926 | 0.917 | 0.917 | 0.922 | |
Combination | S3 [88] | 0.851 | 0.842 | 0.879 | 0.861 |
RFSV [91] | 0.915 | 0.924 | 0.924 | 0.932 | |
SVC [92] | 0.889 | 0.874 | 0.857 | 0.787 | |
SFA [93] | 0.916 | 0.907 | 0.954 | 0.948 |
Group | Method | BID | CID2013 | ||
---|---|---|---|---|---|
PLCC | SROCC | PLCC | SROCC | ||
Spatial domain-based | MLV [46] | 0.375 | 0.317 | 0.689 | 0.621 |
BIBLE [35] | 0.392 | 0.361 | - | - | |
MGV [46] | 0.307 | 0.201 | 0.511 | 0.499 | |
ARISM [47] | 0.193 | 0.151 | - | - | |
CPBD [49] | - | - | 0.418 | 0.293 | |
Spectral domain-based | DCT-QM [60] | 0.383 | 0.376 | 0.662 | 0.653 |
SC-QI [61] | - | - | - | - | |
FISH [62] | 0.485 | 0.474 | 0.638 | 0.587 | |
LPC-SI [65] | 0.315 | 0.216 | 0.634 | 0.609 | |
BISHARP [66] | 0.356 | 0.307 | 0.678 | 0.681 | |
Learning-based | BIQI [72] | 0.513 | 0.472 | 0.742 | 0.723 |
DB-CNN [77] | 0.471 | 0.464 | 0.686 | 0.672 | |
DeepBIQ [78] | - | - | - | - | |
SPARISH [79] | 0.482 | 0.402 | 0.661 | 0.652 | |
SR [81] | 0.415 | 0.467 | 0.621 | 0.634 | |
MSFF [87] | - | - | - | - | |
Combination | S3 [88] | 0.427 | 0.425 | 0.687 | 0.646 |
RFSV [91] | 0.391 | 0.335 | 0.701 | 0.694 | |
SVC [92] | - | - | 0.425 | 0.433 | |
SFA [93] | 0.546 | 0.526 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Yu, L.; Wang, Z.; Ke, Z.; Zhi, C. Review: A Survey on Objective Evaluation of Image Sharpness. Appl. Sci. 2023, 13, 2652. https://doi.org/10.3390/app13042652
Zhu M, Yu L, Wang Z, Ke Z, Zhi C. Review: A Survey on Objective Evaluation of Image Sharpness. Applied Sciences. 2023; 13(4):2652. https://doi.org/10.3390/app13042652
Chicago/Turabian StyleZhu, Mengqiu, Lingjie Yu, Zongbiao Wang, Zhenxia Ke, and Chao Zhi. 2023. "Review: A Survey on Objective Evaluation of Image Sharpness" Applied Sciences 13, no. 4: 2652. https://doi.org/10.3390/app13042652
APA StyleZhu, M., Yu, L., Wang, Z., Ke, Z., & Zhi, C. (2023). Review: A Survey on Objective Evaluation of Image Sharpness. Applied Sciences, 13(4), 2652. https://doi.org/10.3390/app13042652