A Strain Hardening and Softening Constitutive Model for Hard Brittle Rocks
Abstract
:1. Introduction
2. Simplification of the Complete Stress-Strain Curve
3. Mechanical Behaviour of Brittle Hard Rock
3.1. The Test Data of Granite and Diabase
3.2. Young’s Modulus and Poisson’s Ratio
3.3. Plastic Parameter
3.4. Normalised Hardening and Softening Factors
3.5. Strength Parameter Evolution Model
4. Establishment and Verification of the Constitutive Model
4.1. Establishment of the Constitutive Model
4.2. Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
c | Cohesion |
φ | Internal friction angle |
cs, cp and cr | Cohesion of initial yield stress, peak stress and residual stress |
φs, φp, and φr | Internal friction angle of initial yield stress, peak stress and residual stress |
E | Young’s modulus |
Em | Average Young’s modulus |
μ | Poisson’s ratio |
μm | Average Poisson’s ratio |
σi | Principal stress (i = 1, 2, 3) |
σh | A certain axial stress of the strain hardening stage |
σss | A certain axial stress of the strain softening stage |
Elastic guess stress (i = 1, 2, 3) | |
σN | New stress vector of the current step |
σp | Stress vector of the previous step |
σs, σp, and σr | Initial yield stress, peak stress and residual stress |
ε1p | Axial strain of peak stress |
ε1r | Axial strain of residual stress |
εps | Equivalent plastic strain |
Peak parameter (axial plastic strain of peak stress) | |
Principal plastic strain (i = 1, 2, 3) | |
Accumulated maximum principal plastic strain of the previous step (i = 1, 2, 3) | |
ε1s and ε3s | Axial and radial strains of the initial yield stress |
Δσi | Principal stress increment (i = 1, 2, 3) |
Δεps | Equivalent plastic strain increment |
Δεi | Total principal strain increment (i = 1, 2, 3) |
Δ | Principal elastic strain increment (i = 1, 2, 3) |
Δ | Principal plastic strain increment (i = 1, 2, 3) |
Δε | Strain increment vector of the current step |
Dh | Hardening factor |
Dss | Softening factor |
G() | Gaussian function associated with the cohesive |
F() | Gaussian function associated with the internal friction angle |
c() | Modified Gaussian function associated with the cohesive |
φ() | Modified Gaussian function associated with the internal friction angle |
P(σ3) | Function associated with the confining pressure |
ΔXc | Temporary parameter associated with the cohesive |
ΔXφ | Temporary parameter associated with the internal friction angle |
ξc | Fitting parameter associated with the cohesive |
ξφ | Fitting parameter associated with the internal friction angle |
P0 | Fitting coefficient |
A1 | Fitting coefficient |
A2 | Fitting coefficient |
t1 | Fitting coefficient |
t2 | Fitting coefficient |
a | Fitting parameter |
b | Fitting parameter |
R2 | Fitting correlation coefficients |
Si | Elastic stiffness matrix |
K | Bulk modulus |
G | Shear modulus |
References
- Brücker, C.; Preuße, A. The future of underground spatial planning and the resulting potential risks from the point of view of mining subsidence engineering. Int. J. Min. Sci. Technol. 2020, 30, 93–98. [Google Scholar] [CrossRef]
- Bewick, R.P. The strength of massive to moderately jointed rock and its application to cave mining. Rock Mech. Rock Eng. 2021, 54, 3629–3661. [Google Scholar] [CrossRef]
- Martino, J.B.; Chandler, N.A. Excavation-induced damage studies at the Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 2004, 41, 1413–1426. [Google Scholar] [CrossRef]
- Gurocak, Z. Analyses of stability and support design for a diversion tunnel at the Kapikaya dam site, Turkey. Bull. Eng. Geol. Environ. 2011, 70, 41–52. [Google Scholar] [CrossRef]
- Walton, G.; Hedayat, A.; Kim, E.; Labrie, D. Post-yield strength and dilatancy evolution across the brittle–ductile transition in indiana limestone. Rock Mech. Rock Eng. 2017, 50, 1691–1710. [Google Scholar] [CrossRef]
- Alonso, E.; Alejano, L.; Varas, F.; Fdez-Manin, G.; Carranza-Torres, C. Ground response curves for rock masses exhibiting strain-softening behavior. Int. J. Numer. Anal. Methods Geomech. 2003, 27, 1153–1185. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, J.G. A damage-softening statistical constitutive model considering rock residual strength. Comput. Geosci. 2007, 33, 1–9. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; Ding, X. Hardening-softening constitutive model of hard brittle rocks considering dilatant effects and safety evaluation index. Acta Mech. Solida Sin. 2020, 33, 121–140. [Google Scholar] [CrossRef]
- Vakili, A. An improved unified constitutive model for rock material and guidelines for its application in numerical modelling. Comput. Geotech. 2016, 80, 261–282. [Google Scholar] [CrossRef]
- Walton, G.; Diederichs, M.S. A new model for the dilation of brittle rocks based on laboratory compression test data with separate treatment of dilatancy mobilization and decay. Geotech. Geol. Eng. 2015, 33, 661–679. [Google Scholar] [CrossRef]
- Xiao, Y.; Qiao, Y.; He, M.; Li, H.; Cheng, T.; Tang, J. A unified strain-hardening and strain-softening elastoplastic constitutive model for intact rocks. Comput. Geotech. 2022, 148, 104772. [Google Scholar] [CrossRef]
- Zhao, X.G.; Cai, M. A mobilized dilation angle model for rocks. Int. J. Rock Mech. Min. 2010, 47, 368–384. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, H.; Shao, J. An experimental investigation and an elastoplastic constitutive model for a porous rock. Rock Mech. Rock Eng. 2013, 46, 1499–1511. [Google Scholar] [CrossRef]
- Fang, Z.; Harrison, J.P. A mechanical degradation index for rock. Int. J. Rock Mech. Min. 2001, 38, 1193–1199. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zheng, X.M. Strain softening and permeability evolution model of loaded rock and experimental verification. Chin. J. Rock Mech. Eng. 2016, 38, 1125–1132. [Google Scholar]
- Alejano, L.R.; Rodriguez-Dono, A.; Alonso, E.; Manín, G.F. Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunn. Undergr. Space Technol. 2009, 24, 689–705. [Google Scholar] [CrossRef]
- Lee, Y.K.; Pietruszczak, S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass. Tunn. Undergr. Space Technol. 2008, 23, 588–599. [Google Scholar] [CrossRef]
- Fahimifar, A.; Zareifard, M.R. A new elasto-plastic solution for analysis of underwater tunnels considering strain-dependent permeability. Struct. Infrastruct. Eng. 2014, 10, 1432–1450. [Google Scholar] [CrossRef]
- Ranjbarnia, M.; Fahimifar, A.; Oreste, P. Analysis of non-linear strain-softening behaviour around tunnels. Proc. Inst. Civ. Eng.-Geotech. Eng. 2015, 168, 16–30. [Google Scholar] [CrossRef]
- Li, W.T.; Li, S.C.; Feng, X.D.; Li, S.C.; Yuan, C. Study on mechanical behavior of post-peak strain softening of rocks based on mohr-coulomb criterion. Chin. J. Rock Mech. Eng. 2011, 30, 1460–1466. [Google Scholar]
- Pourhosseini, O.; Shabanimashcool, M. Development of an elasto-plastic constitutive model for intact rocks. Int. J. Rock Mech. Min. Sci. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Sharan, S.K. Elastic–brittle–plastic analysis of circular openings in Hoek–Brown media. Int. J. Rock Mech. Min. Sci. 2003, 40, 817–824. [Google Scholar] [CrossRef]
- Hajiabdolmajid, V.; Kaiser, P.K.; Martin, C.D. Modelling brittle failure of rock. Int. J. Rock Mech. Min. 2002, 39, 731–741. [Google Scholar] [CrossRef]
- Walton, G. Initial guidelines for the selection of input parameters for Cohesion-Weakening-Friction-Strengthening (CWFS) analysis of excavations in brittle rock. Tunn. Undergr. Space Technol. 2019, 84, 189–200. [Google Scholar] [CrossRef]
- Rafiei Renani, H.; Martin, C.D. Cohesion degradation and friction mobilization in brittle failure of rocks. Int. J. Rock Mech. Min. Sci. 2018, 106, 1–13. [Google Scholar] [CrossRef]
- Li, P.F.; Zhao, X.G.; Guo, Z.; Ma, L.K.; Chen, L.; Wang, J. Variation of strength parameters of Beishan granite under triaxial compression. Chin. J. Rock Mech. Eng. 2017, 36, 1599–1610. [Google Scholar]
- Min, M.; Jiang, B.; Lu, M.; Long, J.; Zhang, Q. An improved strain-softening model for Beishan granite considering the degradation of elastic modulus. Arab. J. Geosci. 2020, 13, 244. [Google Scholar] [CrossRef]
- Meng, Q.B.; Liu, J.F.; Ren, L.; Pu, H.; Chen, Y.L. Experimental Study On Rock Strength And Deformation Charateristics Under Triaxial Cyclic Loading And Unloading Conditions. Rock Mech. Rock Eng. 2021, 54, 777–797. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhang, Q.; Li, Z.Y.; Jiang, B.S. Strain softening model considering elastic-plastic coupling effect. J. Chin. Coal Soci. 2020, 45, 4037–4051. [Google Scholar]
- Ma, L.; Xu, H.; Tong, Q.; Dong, L.; Zhang, N.; Li, J. Post-yield plastic frictional parameters of a rock salt using the concept of mobilized strength. Eng. Geol. 2014, 177, 25–31. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.M.; Ju, Y.; Cao, W.Z.; Yuan, S.S.; Si, G.Y. A plastic strain-based damage model for heterogeneous coal using cohesion and dilation angle. Int. J. Rock Mech. Min. Sci. 2018, 110, 151–160. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Yang, S. A coupled macro- and meso-mechanical model for heterogeneous coal. Int. J. Rock Mech. Min. Sci. 2017, 94, 64–81. [Google Scholar] [CrossRef]
- Soldo, L.; Vendramini, M.; Eusebio, A. Tunnels design and geological studies. Tunn. Undergr. Space Technol. 2019, 84, 82–98. [Google Scholar] [CrossRef]
- Singh, A.; Ayothiraman, R.; Rao, K.S. Failure criteria for isotropic rocks using a smooth approximation of modified mohr–coulomb failure function. Geotech. Geol. Eng. 2020, 38, 4385–4404. [Google Scholar] [CrossRef]
- Galindo, R.A.; Serrano, A.; Olalla, C. Ultimate bearing capacity of rock masses based on modified Mohr-Coulomb strength criterion. Int. J. Rock Mech. Min. Sci. 2017, 93, 215–225. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Wang, Y.X. A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. J. Cent. South Univ. 2021, 28, 1448–1458. [Google Scholar] [CrossRef]
- Xie, N.; Zhu, Q.Z.; Xu, L.H.; Shao, J.F. A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Comput. Geotech. 2011, 38, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Qu, P.; Zhu, Q.; Zhao, L.; Cao, Y. A micromechanics-based fractional frictional damage model for quasi-brittle rocks. Comput. Geotech. 2021, 139, 104391. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Chen, Y. New constitutive model based on disturbed state concept for shear deformation of rock joints. Arch. Civ. Mech. Eng. 2022, 23, 26. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Wang, J.; Shi, Z.; Lin, H.; Zhang, X. Investigation on the characteristics of fracture process zone under cyclic loading: Insights from macro-mesoscopic analysis. Theor. Appl. Fract. Mech. 2022, 122, 103616. [Google Scholar] [CrossRef]
- Jin, J.C.; She, X.C.; Shang, P.Y. Study on strength parameters and dilation angle evolution models in hard rock elasto-plastic deformation and failure process. Rock Soil Mech. 2019, 40, 4401–4411. [Google Scholar]
- Alejano, L.R.; Alonso, E. Considerations of the dilatancy angle in rocks and rock masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 481–507. [Google Scholar] [CrossRef]
- Yi, K.; Kang, H.; Ju, W.; Liu, Y.; Lu, Z. Synergistic effect of strain softening and dilatancy in deep tunnel analysis. Tunn. Undergr. Space Technol. 2020, 97, 103280. [Google Scholar] [CrossRef]
Rock Type | Em/GPa | μm |
---|---|---|
Granite | 65.47 | 0.26 |
Diabase | 50.28 | 0.24 |
Dh/Dss | Granite | Diabase | ||||
---|---|---|---|---|---|---|
c/MPa | φ/° | R2 | c/MPa | φ/° | R2 | |
Dh = 0 | 27.29 | 41.44 | 0.94 | 43.91 | 28.54 | 0.97 |
Dh = 0.2 | 27.86 | 42.61 | 0.94 | 45.13 | 29.67 | 0.97 |
Dh = 0.5 | 28.69 | 44.20 | 0.94 | 46.91 | 31.26 | 0.96 |
Dh = 0.8 | 29.50 | 45.65 | 0.94 | 48.61 | 32.73 | 0.95 |
Dh = 1.0 (Dss = 0) | 30.03 | 46.54 | 0.94 | 49.72 | 33.64 | 0.94 |
Dss = 0.1 | 28.00 | 45.70 | 0.95 | 48.24 | 32.29 | 0.95 |
Dss = 0.2 | 25.90 | 44.82 | 0.95 | 46.71 | 30.84 | 0.95 |
Dss = 0.4 | 21.44 | 42.87 | 0.97 | 43.5 | 27.57 | 0.96 |
Dss = 0.5 | 16.56 | 40.65 | 0.98 | 40.03 | 23.68 | 0.98 |
Dss = 0.8 | 11.17 | 38.07 | 0.99 | 36.23 | 18.94 | 0.99 |
Dss = 0.9 | 8.24 | 36.63 | 1.00 | 34.18 | 16.16 | 1.00 |
Dss = 1.0 | 5.12 | 35.05 | 1.00 | 31.99 | 13.00 | 1.00 |
Rock Type | σ3/MPa | /% | c | φ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ξc | cs/MPa | cp/MPa | cr/MPa | R2 | ξφ | φs/° | φp/° | φr/° | R2 | |||
Granite | 0.2 | 0.003 | 0.223 | 27.29 | 30.03 | 5.12 | 0.98 | 0.200 | 41.44 | 46.54 | 35.05 | 0.91 |
1 | 0.057 | 0.282 | 27.29 | 30.03 | 5.12 | 0.99 | 0.282 | 41.44 | 46.54 | 35.05 | 0.98 | |
3.5 | 0.078 | 0.467 | 27.29 | 30.03 | 5.12 | 0.99 | 0.462 | 41.44 | 46.54 | 35.05 | 0.97 | |
10 | 0.120 | 0.379 | 27.29 | 30.03 | 5.12 | 0.99 | 0.364 | 41.44 | 46.54 | 35.05 | 0.98 | |
20 | 0.149 | 0.525 | 27.29 | 30.03 | 5.12 | 1.00 | 0.517 | 41.44 | 46.54 | 35.05 | 0.99 | |
40 | 0.239 | 0.672 | 27.29 | 30.03 | 5.12 | 0.99 | 0.663 | 41.44 | 46.54 | 35.05 | 0.98 | |
Diabase | 5 | 0.031 | 0.154 | 43.91 | 49.72 | 32.00 | 0.96 | 0.166 | 28.54 | 33.64 | 13.00 | 0.98 |
10 | 0.060 | 0.212 | 43.91 | 49.72 | 32.00 | 0.99 | 0.214 | 28.54 | 33.64 | 13.00 | 0.98 | |
20 | 0.085 | 0.258 | 43.91 | 49.72 | 32.00 | 0.97 | 0.281 | 28.54 | 33.64 | 13.00 | 0.97 | |
40 | 0.108 | 0.283 | 43.91 | 49.72 | 32.00 | 0.99 | 0.305 | 28.54 | 33.64 | 13.00 | 0.97 |
Parameter | Granite | Diabse | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P0 | A1 | A2 | t1 | t2 | R2 | P0 | A1 | A2 | t1 | t2 | R2 | |
1.510 | 0.075 | 1.445 | 0.565 | 321.094 | 0.99 | 0.114 | 0.119 | 0 | 13.422 | - | 1.00 | |
ξc | 6.790 | 0.198 | 6.414 | 1.027 | 874.929 | 0.92 | 0.285 | 0.227 | 0 | 8.947 | - | 0.99 |
ξφ | 7.075 | 0.203 | 6.709 | 1.006 | 914.635 | 0.91 | 0.313 | 0.237 | 0 | 10.757 | - | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, W.; Chen, L. A Strain Hardening and Softening Constitutive Model for Hard Brittle Rocks. Appl. Sci. 2023, 13, 2764. https://doi.org/10.3390/app13052764
Chen J, Wang W, Chen L. A Strain Hardening and Softening Constitutive Model for Hard Brittle Rocks. Applied Sciences. 2023; 13(5):2764. https://doi.org/10.3390/app13052764
Chicago/Turabian StyleChen, Junchi, Weihua Wang, and Longfeng Chen. 2023. "A Strain Hardening and Softening Constitutive Model for Hard Brittle Rocks" Applied Sciences 13, no. 5: 2764. https://doi.org/10.3390/app13052764
APA StyleChen, J., Wang, W., & Chen, L. (2023). A Strain Hardening and Softening Constitutive Model for Hard Brittle Rocks. Applied Sciences, 13(5), 2764. https://doi.org/10.3390/app13052764