Analysis of Daily Activity Pattern to Estimate the Physical Activity Level and Energy Expenditure of Elite and Non-Elite Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure
2.2. Ethical Consideration
2.3. Inclusion and Exclusion Criteria
2.4. Study Design
2.5. Anthropometric Measurements
2.6. Participants
2.7. Physical Workload/Activity Load
2.8. Data Analysis
3. Results
3.1. Daily Activity Pattern of the Athletes
3.2. Physical Contour Analysis of Elite and Non-Elite Athletes of Different Sports
3.3. Physical Activity Level in Athletes of Different Sports
3.4. Physical Activity Contour of Athletes
3.5. The Relationship between Physical Measures and Energy Attributes of Athletes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loucks, A.B. Energy balance and body composition in sports and exercise. J. Sport. Sci. 2004, 22, 1–14. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Di Marco, N.M.; Angley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sport. Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010.
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126. [Google Scholar]
- Carlsohn, A.; Scharhag-Rosenberger, F.; Cassel, M.; Weber, J.; de Guzman Guzman, A.; Mayer, F. Physical activity levels to estimate the energy requirement of adolescent athletes. Pediatr. Exerc. Sci. 2011, 23, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.Á.; Paulis, J.C.; Bendala, F.J.; Owen, A.L. Comparison of the physical and physiological demands of friendly matches and different types of preseason training sessions in professional soccer players. RICYDE. Rev. Int. Cienc. Deporte 2019, 15, 339–352. [Google Scholar] [CrossRef]
- Baptista, I.; Johansen, D.; Figueiredo, P.; Rebelo, A.; Pettersen, S.A. Positional differences in peak-and accumulated-training load relative to match load in elite football. Sports 2019, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, R.; Nobari, H.; Bolboli, L.; Siahkouhian, M.; Brito, J.P. Comparison of Measurements of External Load between Professional Soccer Players. InHealthcare 2022, 10, 1116. [Google Scholar] [CrossRef]
- Eiholzer, U.; Meinhardt, U.; Petro, R.; Witassek, F.; Gutzwiller, F.; Gasser, T. High- Intensity Training Increases Spontaneous Physical Activity in Children: A Randomized Controlled Study. J. Pediatr. 2010, 156, 242–246. [Google Scholar] [CrossRef]
- Kriemler, S.H.; Hebestreit, S.; Mikami, T.; Bar-Or, B.V.; Ayub, O.; Bar-Or, O. Impact of a single exercise bout on energy expenditure and spontaneous physical activity of obese boys. Pediatr. Res. 1999, 46, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Torun, B. Energy requirements of children and adolescents. Public Health Nutr. 2005, 8, 968–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plasqui, G.; Westerterp, K.R. Seasonal variation in total energy expenditure and physical activity in Dutch young adults. Obes. Res. 2004, 12, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Plasqui, G.; Kester, A.D.; Westerterp, K.R. Seasonal variation in sleeping metabolic rate, thyroid activity, and leptin. Am. J. Physiol.-Endocrinol. Metab. 2003, 285, E338–E343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.M.; Doust, J.H. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med. Sci. Sport. Exerc. 1998, 30, 1304–1313. [Google Scholar] [CrossRef]
- Joint, F.A.O. WHO/UNU Expert Consultation Group. Human energy requirements. Scientific background papers from the Joint FAO/WHO/UNU Expert Consultation. October 17–24, 2001. Rome, Italy. Public Health Nutr. 2005, 8, 929–1228. [Google Scholar]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Roza, A.M.; Shizgal, H.M. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am. J. Clin. Nutr. 1984, 40, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin College Division: Boston, MA, USA, 2003; p. 663. [Google Scholar]
- Hu, H.M.; Zhao, C.Y.; Zhang, X.; Ran, L.H.; Liu, T.J. Correlation Analysis on the Main and Basic Body Dimension for Chinese Adults. In Proceedings of the International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, Las Vegas, NV, USA, 15–20 July 2015; Springer: Cham, Switzerland, 2015; pp. 37–43. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- James, W.P.T.; Schofield, E.C. Human Energy Requirements. A Manual for Planners and Nutritionists; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- FAO. Food energy—Methods of analysis and conversion factors. In Report of a Technical Workshop; FAO Food and Nutrition Paper No. 77; FAO: Rome, Italy, 2003. [Google Scholar]
- Markantes, G.K.; Tsichlia, G.; Georgopoulos, N.A. Diet and exercise in the management of PCOS: Starting from the basics. In Polycystic Ovary Syndrome; Elsevier: Amsterdam, The Netherlands, 2022; pp. 97–115. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Yang, Y.J. An overview of current physical activity recommendations in primary care. Korean J. Fam. Med. 2019, 40, 135–142. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Strategy on Diet, Physical Activity and Health. Physical Activity and Young People; WHO: Geneva, Switzerland, 2002. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA57/A57_R17-en.pdf (accessed on 23 November 2021).
- Ismail, M.N.; WD, W.N.; Zawiah, H. Energy expenditure studies to predict requirements of selected national athletes. Malays. J. Nutr. 1997, 3, 71–81. [Google Scholar]
- Hanjabam, B.; Kailashiya, J. Study of ball hitting speed and related physiological and anthropometric characteristics in field hockey players. Asian Acad. Res. J. Multidiscip. 2014, 1, 398–410. [Google Scholar]
- Hanjabam, B.; Kailashiya, J. Gender difference in fatigue index and its related physiology. Indian J. Physiol. Pharmacol. 2015, 59, 170–174. [Google Scholar] [PubMed]
- Gabbett, T.J. Debunking the myths about training load, injury and performance: Empirical evidence, hot topics and recommendations for practitioners. Br. J. Sport. Med. 2020, 54, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Physiopedia. Load Management. Available online: https://www.physio-pedia.com/Load_Management#cite_ref-:5_41-7 (accessed on 3 March 2022).
- Roberts, S.B.; Das, S.K. Energy requirements of men and women. In Principles of Gender Specific Medicine; Academic Press: San Diego, CA, USA, 2004; pp. 705–714. [Google Scholar]
Variables | Female (n = 53) | Male (n = 47) | ||
---|---|---|---|---|
Elite (n = 23) | Non-Elite (n = 30) | Elite (n = 19) | Non-Elite (n = 28) | |
Age (years) | 17.26 ± 1.63 | 20.50 ± 1.87 | 18.95 ± 1.58 | 20.68 ± 1.56 |
Height (cm) | 163.33 ± 7.20 | 161.83 ± 5.21 | 174.44 ± 7.22 | 168.73 ± 9.09 |
Weight (kg) | 57.96 ± 11.95 | 52.78 ± 6.17 | 69.68 ± 9.84 | 60.09 ± 10.06 |
BMI (kg/m2) | 21.57 ± 3.11 | 20.12 ± 1.78 | 22.91 ± 2.88 | 20.97 ± 2.01 |
Fat% | 23.75 ± 4.44 | 22.25 ± 2.63 | 15.53 ± 3.99 | 13.12 ± 2.88 |
Sports | Female (n = 53) | BMR | TEE | Sports | Male (n = 47) | BMR | TEE |
---|---|---|---|---|---|---|---|
Athletics | Elite | - | - | Athletics | Elite (n = 4) | 1738.05 | 4976.85 |
Non-elite (n = 10) | 1330.77 | 2913.19 | Non-elite | - | - | ||
Basketball | Elite | - | - | Basketball | Elite | - | - |
Non-elite (n = 7) | 1354.36 | 3325.02 | Non-elite (n = 6) | 1431.23 | 3053.10 | ||
Badminton | Elite | - | - | Badminton | Elite | - | - |
Non-elite (n = 2) | 1449.52 | 2391.70 | Non-elite (n = 2) | 1758.83 | 3243.23 | ||
Boxing | Elite (n = 5) | 1488.71 | 4253.75 | Boxing | Elite (n = 7) | 1802.41 | 4279.56 |
Non-elite | - | - | Non-elite | - | - | ||
Cricket | Elite | - | - | Cricket | Elite | - | - |
Non-elite (n = 3) | 1350.66 | 2534.65 | Non-elite (n = 3) | 1591.39 | 2625.58 | ||
Field Hockey | Elite (n = 9) | 1361.77 | 4103.97 | Kabaddi | Elite | - | - |
Non-elite | - | - | Non-elite (n = 3) | 1834.75 | 3376.89 | ||
Volleyball | Elite | - | - | Volleyball | Elite | - | - |
Non-elite (n = 8) | 1350.31 | 2611.25 | Non-elite (n = 8) | 1579.23 | 3129.86 | ||
Wrestling | Elite (n = 9) | 1436.11 | 3632.56 | Wrestling | Elite (n = 8) | 1756.14 | 4636.29 |
Mean (SD) | 1383.44 (54.97) | 3227.81 (633.85) | 1631.61 (152.87) | 3467.65 (773.65) |
Variables | Female (n = 53) | Male (n = 47) | Total (n = 100) | ||
---|---|---|---|---|---|
Elite (n = 23) | Non-Elite (n = 30) | Elite (n = 19) | Non-Elite (n = 28) | ||
BMR (kcal/day) | 1414.45 ± 120.93 | 1351.70 ± 64.01 | 1752.30 ± 137.93 | 1589.80 ± 172.11 | 1515.06 ± 203.52 |
TEE (kcal/day) | 3964.5 ± 423.84 | 2854.6 ± 452.66 | 4556.7 ± 591.48 | 3080.4 ± 489.06 | 3532.2 ± 827.75 |
PAL | 2.79 ± 0.24 | 2.12 ± 0.34 | 2.59 ± 0.28 | 1.94 ± 0.29 | 2.33 ± 0.47 |
Variables | Age | Height | Weight | BMI | BMR | PAL | TEE |
---|---|---|---|---|---|---|---|
Age | 1 | ||||||
Height | 0.211 | 1 | |||||
Weight | 0.153 | 0.777 * | 1 | ||||
BMI | 0.060 | 0.328 | 0.847 * | 1 | |||
BMR | 0.149 | 0.844 * | 0.909 * | 0.652 * | 1 | ||
PAL | −0.504 * | −0.070 | 0.045 | 0.122 | −0.033 | 1 | |
TEE | −0.332 | 0.427 | 0.575 * | 0.497 | 0.557 * | 0.806 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapri, E.; Dey, S.; Mehta, M.; Deshpande, N.; Zemková, E. Analysis of Daily Activity Pattern to Estimate the Physical Activity Level and Energy Expenditure of Elite and Non-Elite Athletes. Appl. Sci. 2023, 13, 2763. https://doi.org/10.3390/app13052763
Kapri E, Dey S, Mehta M, Deshpande N, Zemková E. Analysis of Daily Activity Pattern to Estimate the Physical Activity Level and Energy Expenditure of Elite and Non-Elite Athletes. Applied Sciences. 2023; 13(5):2763. https://doi.org/10.3390/app13052763
Chicago/Turabian StyleKapri, Ekta, Subrata Dey, Manju Mehta, Nilima Deshpande, and Erika Zemková. 2023. "Analysis of Daily Activity Pattern to Estimate the Physical Activity Level and Energy Expenditure of Elite and Non-Elite Athletes" Applied Sciences 13, no. 5: 2763. https://doi.org/10.3390/app13052763
APA StyleKapri, E., Dey, S., Mehta, M., Deshpande, N., & Zemková, E. (2023). Analysis of Daily Activity Pattern to Estimate the Physical Activity Level and Energy Expenditure of Elite and Non-Elite Athletes. Applied Sciences, 13(5), 2763. https://doi.org/10.3390/app13052763