Evaluation of Body Composition Changes by Bioelectrical Impedance Vector Analysis in Volleyball Athletes Following Mediterranean Diet Recommendations during Italian Championship: A Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants and Study Design
2.2. Anthropometric Parameters
2.3. Bioelectrical Impedance Analysis
2.4. Dietary Recommendations and Nutritional Supplementation
2.5. Training Methods
- Monday: Recovery.
- Tuesday: Double Morning Weights, Afternoon Spec. Prep., and T.T. (technique training).
- Wednesday: Afternoon Spec. Prep. and T.T.
- Thursday: Double Morning Weights, Afternoon Spec. Prep., and T.T.
- Friday: T.T.
- Saturday: T.T.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brocherie, F.; Girard, O.; Forchino, F.; AHaddad, H.; Dos Santos, G.A.; Millet, G.P. Relationships between anthropometric measures and athletic performance, with special reference to repeated-sprint ability, in the Qatar national soccer team. J. Sport Sci. 2014, 32, 1243–1254. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Martínez-Olcina, M.; Hernández-García, M.; Rubio-Arias, J.; Sánchez-Sánchez, J.; Lara-Cobos, D.; Vicente-Martínez, M.; Carvalho, M.J.; Sánchez-Sáez, J.A. Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 2837. [Google Scholar] [CrossRef]
- Manzano Carrasco, S.; Felipe, J.L.; Sanchez, J.; Hernandez-Martin, A.; Gallardo, L.; Garcia-Unanue, J. Physical Fitness, Body Com-position, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Matura-tional Stage. Int J Environ. Res Public Health 2020, 17, 3257. [Google Scholar] [CrossRef]
- Morelli, C.; Avolio, E.; Galluccio, A.; Caparello, G.; Manes, E.; Ferraro, S.; De Rose, D.; Santoro, M.; Barone, I.; Catalano, S.; et al. Impact of Vigorous-Intensity Physical Activity on Body Composition Parameters, Lipid Profile Markers, and Irisin Levels in Adolescents: A Cross-Sectional Study. Nutrients 2020, 12, 742. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, E.; Fardella, M.; Cannizzaro, V.; Faraoni, F.; La Carrubba, R.; Trillè, S.S.; Leonardi, F. Mediterranean diet as a natural supplemental resource for athletes and physical activity. Ann Ig. 2019, 31, 576–581. [Google Scholar]
- Caparello, G.; Galluccio, A.; Giordano, C.; Lofaro, D.; Barone, I.; Morelli, C.; Sisci, D.; Catalano, S.; Andò, S.; Bonofiglio, D. Adherence to the Mediterranean diet pattern among university staff: A cross-sectional web-based epidemiological study in Southern Italy. Int. J. Food Sci. Nutr. 2020, 71, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.E.; DeCesare, K.N.; Johnson, A.; Kress, K.S.; Inman, C.L.; Weiss, E.P. Short-Term Mediterranean Diet Improves Endurance Exercise Performance: A Randomized-Sequence Crossover Trial. J. Am. Coll. Nutr. 2019, 38, 597–605. [Google Scholar] [CrossRef]
- Ceraudo, F.; Caparello, G.; Galluccio, A.; Avolio, E.; Augimeri, G.; De Rose, D.; Vivacqua, A.; Morelli, C.; Barone, I.; Catalano, S.; et al. Impact of Mediterranean Diet Food Choices and Physical Activity on Serum Metabolic Profile in Healthy Adolescents: Findings from the DIMENU Project. Nutrients 2022, 14, 881. [Google Scholar] [CrossRef]
- Augimeri, G.; Galluccio, A.; Caparello, G.; Avolio, E.; La Russa, D.; De Rose, D.; Morelli, C.; Barone, I.; Catalano, S.; Andò, S.; et al. Potential Antioxidant and Anti-Inflammatory Properties of Serum from Healthy Adolescents with Optimal Mediterranean Diet Adherence: Findings from DIMENU Cross-Sectional Study. Antioxidants 2021, 10, 1172. [Google Scholar] [CrossRef]
- Meslier, V.; Laiola, M.; Roager, H.M.; De Filippis, F.; Roume, H.; Quinquis, B.; Giacco, R.; Mennella, I.; Ferracane, R.; Pons, N.; et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 2020, 69, 1258–1268. [Google Scholar] [CrossRef] [Green Version]
- Faes, T.J.; Van Der Meij, H.A.; De Munck, J.C.; Heethaar, R.M. The electric resistivity of human tissues (100 Hz–10 MHz): A me-ta-analysis of review studies. Physiol. Meas. 1999, 20, R1. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Schenk, K.; Laninschegg, L.; Lukaski, H.; Burtscher, M. Bioimpedance identifies bodyFluidLoss after exercise in the heat: A pilot study with body cooling. PLoS ONE 2014, 9, e109729. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Piras, A.; Raffi, M.; Trofè, A.; Perazzolo, M.; Mascherini, G.; Toselli, S. The Effects of Dehydration on Metabolic and Neuromuscular Functionality during Cycling. Int. J. Environ. Res. Public Health 2020, 17, 1161. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, A.; Monteleone, M.; Van Loan, M.; Promenzio, L.; Tarantino, U.; De Lorenzo, A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med. Sci. Sports Exerc. 2001, 33, 507–511. [Google Scholar] [CrossRef]
- Carter, J.E.L.; Heath, B.H. Somatotyping Development and Applications; Cambridge University, Press: Cambridge, UK, 1990. [Google Scholar]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Mereu, E.; Buffa, R.; Lussu, P.; Marini, E. Phase angle, vector length, and body composition. Am. J. Clin. Nutr. 2016, 104, 845e7. [Google Scholar] [CrossRef] [Green Version]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry. In Report of A WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995; Volume 854, pp. 1–452. [Google Scholar]
- Piccoli, A.; Pastori, G. BIVA Software; University of Padova: Padua, Italy, 2002. [Google Scholar]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic Bioelectrical Impedance Vector Reference Values for Assessing Body Composition in Male and Female Athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [Green Version]
- Alacid, F.; Vaquero-Cristóbal, R.; Sánchez-Pato, A.; Muyor, J.M.; López-Miñarro, P. Habit based consumptions in the medi-terranean diet and the relationship with anthropometric parameters in young female kayakers. Nutr. Hosp. 2014, 29, 121–127. [Google Scholar]
- Sánchez-Benito, J.L.; Sánchez-Soriano, E.; Suárez, J.G. Assessment of the Mediterranean Diet Adequacy Index of a collective of young cyclists. Nutr. Hosp. 2009, 24, 77–86. [Google Scholar]
- Rubio-Arias, J.; Ramos Campo Dj Ruiloba Nuñez, J.M.; Carrasco Poyatos, M.; Alcaraz Ramón, P.E.; Jiménez Díaz, F.J. Adherence to a mediterranean diet and sport performance in a elite female athletes futsal population. Nutr. Hosp. 2015, 31, 2276–2282. [Google Scholar]
- Pi, C.M.; Simón-Grima, J.; Peñarrubia-Lozano, C.; Izquierdo, D.M.; Moliner-Urdiales, D.; Arrese, A.L. Exercise addiction risk and health in male and female amateur endurance cyclists. J. Behav. Addict. 2017, 6, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Santos-Sánchez, G.; Cruz-Chamorro, I.; Perza-Castillo, J.L.; Vicente-Salar, N. Body Composition Assessment and Medi-terranean Diet Adherence in U12 Spanish Male Professional Soccer Players: Cross-Sectional Study. Nutrients 2021, 13, 4045. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.B.L. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. TheMediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Caruso, F.; Kwok, L.; Lee, G.; Caruso, A.; Gionfra, F.; Candelotti, E.; Belli, S.L.; Molasky, N.; Raley-Susman, K.M.; et al. Protection by extra virgin olive oil against oxidative stress in vitro and in vivo. Chemical and biological studies on the health benefits due to a major component of the Mediterranean diet. PLoS ONE 2017, 12, e0189341. [Google Scholar] [CrossRef]
- Muros, J.J.; Zabala, M. Differences in Mediterranean Diet Adherence between Cyclists and Triathletes in a Sample of Spanish Athletes. Nutrients 2018, 10, 1480. [Google Scholar] [CrossRef] [Green Version]
- Bonofiglio, D. Mediterranean Diet and Physical Activity as Healthy Lifestyles for Human Health. Nutrients 2022, 14, 2514. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med. 2014, 44 (Suppl. S1), 25–33. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, Muscle Glycogen and Physical Performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef]
- Campa, F.; Thomas, D.M.; Watts, K.; Clark, N.; Baller, D.; Morin, T.; Toselli, S.; Koury, J.C.; Melchiorri, G.; Andreoli, A.; et al. Reference Percentiles for Bioelectrical Phase Angle in Athletes. Biology 2022, 11, 264. [Google Scholar] [CrossRef]
- Heymsfield, S.; Lohman, T.; Wang, Z.; Going, S. Human Body Composition, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Bongiovanni, T.; Mascherini, G.; Genovesi, F.; Pasta, G.; Iaia, F.M.; Trecroci, A.; Ventimiglia, M.; Alberti, G.; Campa, F. Bioimpedance Vector References Need to Be Period-Specific for Assessing Body Composition and Cellular Health in Elite Soccer Players: A Brief Report. J. Funct. Morphol. Kinesiol. 2020, 5, 73. [Google Scholar] [CrossRef]
- Sjödin, A.M.; Forslund, A.H.; Westerterp, K.R.; Andersson, A.B.; Forslund, J.M.; Hambraeus, L.M. The influence of physical activity on BMR. Med. Sci. Sports Exerc. 1996, 28, 85–91. [Google Scholar] [CrossRef]
- Stiegler, P.; Cunliffe, A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006, 36, 239–262. [Google Scholar] [CrossRef]
- Nielsen, J.J.; Mohr, M.; Klarskov, C.; Kristensen, M.; Krustrup, P.; Juel, C.; Bangsbo, J. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J. Physiol. 2004, 554 Pt 3, 857–870. [Google Scholar] [CrossRef]
Total Team (n = 11) | |
---|---|
Mean ± SD | |
Height (cm) | 191 ± 9 |
Weight (Kg) | 89.2 ± 13.7 |
BMI (kg/m2) | 24.2 ± 1.9 |
Rz (Ohm) | 476.6 ± 30.7 |
Xc (Ohm) | 57.9± 5.7 |
PhA (°) | 6.9 ± 0.6 |
FM (kg) | 12.9 ± 3.3 |
FFM (kg) | 76.6 ± 10.7 |
BCM (kg) | 40.3 ± 4.1 |
BCMI (Kg/m2) | 11 ± 0.5 |
ECM (kg) | 31.3 ± 5.7 |
SMM (kg) | 37.5 ± 4.2 |
TBW (kg) | 51.7 ± 6.7 |
ECW (kg) | 22.6 ± 3.6 |
ICW (kg) | 29.2 ± 3.1 |
Na/K | 0.7 ± 0.1 |
BMR (Kcal) | 2310.4 ± 295.7 |
MEDAS Score | 9.8 ± 1.1 |
P | C | PO | ANOVA | Post Hoc | |||
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | P vs. C | C vs. PO | P vs. PO | ||
BMI (kg/m2) | 24.5 ± 0.3 | 25.3 ± 0.3 | 25.7 ± 0.6 | 0.002 | 0.011 | 0.004 | ns |
Rz (Ohm) | 459.2 ± 15.2 | 447.3 ± 2.4 | 447.4 ± 0.3 | ns | ns | ns | ns |
Xc (Ohm) | 55.6 ± 2.0 | 59.4 ± 1.8 | 59.9 ± 0 | ns | 0.045 | ns | ns |
PhA (°) | 6.9 ± 0.5 | 7.4 ± 0.5 | 7.6 ± 0.5 | <0.0001 | 0.003 | 0.001 | ns |
FM (kg) | 12.8 ± 0.3 | 13.6 ± 0.4 | 14.2 ± 0.1 | 0.002 | 0.024 | 0.004 | ns |
FFM (kg) | 77.6± 0.9 | 79.7 ± 0.7 | 80.6 ± 0.2 | 0.006 | 0.009 | 0.008 | ns |
BCM (kg) | 40.6 ± 0.4 | 43.5 ± 2.7 | 44.0 ± 0. | ns | ns | ns | ns |
BCMI (kg/m2) | 11.1 ± 0.1 | 11.8 ± 0.3 | 12 ± 0.02 | 0.024 | 0.003 | 0.004 | ns |
ECM (kg) | 31.4 ± 0.4 | 30 ± 0.5 | 29.7 ± 0.4 | 0.025 | 0.013 | 0.013 | ns |
SMM (kg) | 37.9 ± 0.5 | 41.0 ± 0.9 | 41.4 ± 0.1 | 0.033 | 0.003 | 0.004 | ns |
TBW (kg) | 53.2 ± 1.3 | 54.8 ± 0.4 | 55.0 ± 0.1 | 0.024 | ns | ns | ns |
ECW (kg) | 23.4 ± 0.7 | 23.8 ± 0.1 | 23.9± 0.1 | ns | ns | ns | ns |
ICW (kg) | 30.2 ± 1.0 | 30.9± 0.3 | 31.1 ± 0.1 | ns | ns | ns | ns |
Na/K | 0.8 ± 0.1 | 0.7 ± 0.02 | 0.7 ± 0.0 | 0.033 | 0.036 | ns | ns |
BMR (Kcal) | 2338 ± 25.7 | 2402 ± 22.6 | 2415 ± 5.6 | 0.008 | 0.013 | 0.015 | ns |
MEDAS Score | 10 ± 0.2 | 10.3 ± 0.1 | 10.2 ± 0.1 | ns | ns | ns | ns |
Mediterranean Diet Adherence by MEDAS Score (%) | P (n = 11) | C (n = 11) | PO (n = 11) | p-Value |
---|---|---|---|---|
Optimal (≥10) | 73 (n = 8) | 64 (n = 7) | 73 (n = 8) | ns |
Moderate (6–9) | 27 (n = 3) | 36 (n = 4) | 27 (n = 3) | ns |
Poor (≤5) | 0 (n = 0) | 0 (n = 0) | 0 (n = 0) | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caparello, G.; Galluccio, A.; Ceraudo, F.; Pecorella, C.; Buzzanca, F.; Cuccomarino, F.; Bonofiglio, D.; Avolio, E. Evaluation of Body Composition Changes by Bioelectrical Impedance Vector Analysis in Volleyball Athletes Following Mediterranean Diet Recommendations during Italian Championship: A Pilot Study. Appl. Sci. 2023, 13, 2794. https://doi.org/10.3390/app13052794
Caparello G, Galluccio A, Ceraudo F, Pecorella C, Buzzanca F, Cuccomarino F, Bonofiglio D, Avolio E. Evaluation of Body Composition Changes by Bioelectrical Impedance Vector Analysis in Volleyball Athletes Following Mediterranean Diet Recommendations during Italian Championship: A Pilot Study. Applied Sciences. 2023; 13(5):2794. https://doi.org/10.3390/app13052794
Chicago/Turabian StyleCaparello, Giovanna, Angelo Galluccio, Fabrizio Ceraudo, Claudio Pecorella, Fabio Buzzanca, Francesco Cuccomarino, Daniela Bonofiglio, and Ennio Avolio. 2023. "Evaluation of Body Composition Changes by Bioelectrical Impedance Vector Analysis in Volleyball Athletes Following Mediterranean Diet Recommendations during Italian Championship: A Pilot Study" Applied Sciences 13, no. 5: 2794. https://doi.org/10.3390/app13052794
APA StyleCaparello, G., Galluccio, A., Ceraudo, F., Pecorella, C., Buzzanca, F., Cuccomarino, F., Bonofiglio, D., & Avolio, E. (2023). Evaluation of Body Composition Changes by Bioelectrical Impedance Vector Analysis in Volleyball Athletes Following Mediterranean Diet Recommendations during Italian Championship: A Pilot Study. Applied Sciences, 13(5), 2794. https://doi.org/10.3390/app13052794