Anthropometric and Kinanthropometric Distinctive Profile of a Sedentary Population Compared with an Amateur Athlete Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Legal Documents
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Sample
- -
- Upper and lower body = The sports observed in this group were as follows: airsoft, basketball, handball, canoeing, capoeira, cross fit, American football, gym, swimming, rugby, and volleyball. This group comprised 307 people, 200 were men and 107 women, with an average age of 24.10 ± 4.25 years.
- -
- Mainly lower body = The sports observed in this group were as follows: walking, cycling, football, and running. Our principal criteria to classify that the sports in this category was that players did not support weights and resistance in the up extremity unlike players in upper and lower body sports. This group comprised 193 people, 135 were men and 58 women, with an average age of 26.83 ± 4.87 years.
2.5. Study Variables
2.6. Methodology
2.7. Statistical Analysis
- -
- Sedentary = composed of 24 individuals of the 73 initial participants.
- -
- Amateur athletes = composed of 351 individuals of the 501 initial participants. Additionally, we divided this group into another two based on which body area they use:
- -
- Upper and lower body = composed of 135 individuals of the 194 initial participants.
- -
- Mainly lower body = composed of 216 individuals of the 307 initial participants.
3. Results
3.1. Variable Reduction
3.2. Relationship of Explanatory Variables Based on Lifestyle and Type of Sport Practiced
3.3. Relationship of Explanatory Variables According to the Practiced Sport
4. Discussion
5. Conclusions
6. Strengths and Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Gross, M.; Meléndez, A. Sedentarism, active lifestyle and sport: Impact on health and obesity prevention. Nutr. Hosp. 2013, 28, 89–98. [Google Scholar]
- Oja, P. Health benefits of different sport disciplines for adults: Systematic review of observational and intervention studies with meta-analysis. Br. J. Sports Med. 2015, 49, 434–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Breding, S.S.D. Reflections on Physical Activity and Health: What Should we Recommend? Can. J. Cardiol. 2016, 32, 495–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esparza-Ros, F. Protocolo Internacional Para la Valoración Antropométrica, 1st ed.; Universidad Católica San Antonio de Murcia: Murcia, Spain, 2016. [Google Scholar]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Piras, A.; Raffi, M.; Toselli, S. Functional movement patterns and body composition of high-level volleyball, soccer and rugby players. J. Sport Rehabil. 2019, 28, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Masanovic, B.; Bavcevic, T.; Bavcevic, I. Comparative study of anthropometric measurement and body composition between junior soccer and volleyball players from the Serbian National League. Sport Mont 2019, 17, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Navas-Harrison, D.J.; Pérez-Pico, A.M.; Mayordomo Acevedo, R. Impact of kinanthropometric differences according to non-pro-fessional sports activity practiced. Appl. Sci. 2021, 11, 5063. [Google Scholar] [CrossRef]
- Nicola, T.L.; Jewison, D.J. The anatomy and biomechanics of running. Clin. Sports Med. 2012, 31, 187–201. [Google Scholar] [CrossRef]
- Dugan, S.A.; Bhat, K.P. Biomechanics and analysis of running gait. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 603–621. [Google Scholar] [CrossRef]
- Nunome, H.; Hennig, E.; Smith, N. Football Biomechanics, 1st ed.; Routledge: London, UK, 2017. [Google Scholar]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Khosla, T. Sport for tall. Br. Med. J. (Clin. Red Ed.) 1983, 287, 736–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, J.B. Issues and recommendations for exploratory factor analysis and principal component analysis. Res. Soc. Adm. Pharm. 2021, 17, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Ricolfi, L.; Testa, S. Factorial invariance and orthogonal rotation. Multivar. Behac. Res. 2020, 56, 787–804. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 1971–1983. [Google Scholar] [CrossRef]
- Keys, A.; Karvonen, N.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.M.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body Mass Index in estimating body fat during adolescence. JAMA 2017, 171, 629–636. [Google Scholar] [CrossRef]
- Jablonowska, L.B.; Wrzosek, M.; Wlodarcyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 185–191. [Google Scholar]
- Acero-Jauregui, J.A.; Antropometría Biomecánica. Codificación Vertical de Macro-índices Corporales. Available online: https://g-se.com/antropometria-biomecanica-codificacion-vertical-de-macro-indices-corporales-bp-K57cfb26d59295 (accessed on 12 December 2022).
- Webborn, N.; Williams, A.; McNamee, M.; Brouchard, C.; Pitsiladis, Y.; Ahmetov, I.; Ashley, E.; Byrne, N.; Camporesi, S.; Coliins, M.; et al. Direct to consumer genetic testing for predicting sports performance and talent identification: Consensuns statement. Br. J. Sports Med. 2015, 49, 1486–1491. [Google Scholar] [CrossRef]
- Jiménez-Mesa, C.R.; Mojena Aldana, C.; Sivila Jiménez, E. Actividades físicas y deportivas en la identificación de posibles talentos para el deporte. Rev. Científica Olimp. 2021, 18, 306–319. [Google Scholar]
- Den Hartigh, R.J.R.; Niessen, S.M.; Wouter, G.P.; Meijer, F.; Meijer, R.R. Selection procedures in sports: Improving predictions of athlete’s future performance. Eur. J. Sport Sci. 2018, 18, 1191–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, D.T.; Naughton, G.A.; Torode, M. Predictability of physiological testing the role of maturation in talent identification for adolescent team sports. J. Sci. Med. Sports 2006, 9, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Talent identification and development programmes in sport. Current models and future directions. Sports Med. 2008, 38, 703–714. [Google Scholar] [CrossRef]
- Gallant, F.; O’Loughlin, J.L.; Brunet, J.; Sabiston, C.; Belánguer, M. Childhood sports participation and adolescent sport profile. Pediatrics 2017, 140, e20171449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | Male | Female | |
---|---|---|---|
Football | 12.0% (69) | 14.4% (52) | 7.9% (17) |
Walking | 11.1% (64) | 8.9% (32) | 15.0% (32) |
Basketball | 9.2% (53) | 7.5% (27) | 12.1% (26) |
Crossfit | 8.5% (49) | 10.6% (38) | 5.1% (11) |
Running | 8.5% (49) | 11.1% (40) | 4.2% (9) |
Handball | 8.4% (49) | 7.2% (26) | 10.3% 22) |
Volleyball | 7.0% (40) | 4.4% (16) | 11.2% (24) |
Gym | 5.4% (31) | 4.4% (16) | 7.0% (15) |
Airsoft | 3.1% (18) | 5.0% (18) | 0.0% (0) |
Rugby | 4.4% (25) | 6.9% (25) | 0.0% (0) |
Canoe | 3.0% (17) | 4.4% (16) | 0.5% (1) |
American football | 2.6% (15) | 4.2% (15) | 0.0% (0) |
Cycling | 2.1% (12) | 3.3% (12) | 0.0% (0) |
Swimming | 1.0% (6) | 0.0% (0) | 2.8% (6) |
Capoeria | 0.9% (5) | 0.8% (3) | 0.9% (2) |
Sedentary lifestyle | 12.7% (73) | 6.7% (24) | 22.9% (49) |
574 (100%) | 360 (100%) | 214 (100%) |
Factors | ||||||
---|---|---|---|---|---|---|
Variable | Communality | Fat Mass | Muscle Mass | Bone Mass | Skinfolds | Robustness |
Abdominal fold | 0.854 | 0.894 | - | - | - | - |
Suprailiac fold | 0.814 | 0.883 | - | - | - | - |
Subscapular fold | 0.764 | 0.826 | - | - | - | - |
Triceps fold | 0.609 | 0.743 | - | - | - | - |
Pectoral fold | 0.626 | 0.747 | - | - | - | - |
Fat mass | 0.975 | 0.792 | - | - | - | - |
Body Density Index | 0.889 | 0.684 | - | - | - | - |
Muscular mass | 0.970 | - | 0.911 | - | - | - |
Weight | 0.987 | - | 0.730 | - | - | - |
Residual mass | 0.960 | - | 0.716 | - | - | - |
Body Mass Index | 0.954 | - | 0.761 | - | - | - |
Arm circumference | 0.838 | - | 0.867 | - | - | - |
Hip circumference | 0.727 | - | 0.662 | - | - | - |
Waist circumference | 0.651 | - | 0.597 | - | - | - |
Thigh circumference | 0.627 | - | 0.553 | - | - | - |
Calf circumference | 0.570 | - | 0.547 | - | - | - |
Bone mass | 0.985 | - | - | 0.858 | - | - |
Bistyloid of the wrist diameter | 0.664 | - | - | 0.800 | - | - |
Bicondylar of the femur diameter | 0.709 | - | - | 0.776 | - | - |
Tight fold | 0.810 | - | - | - | 0.874 | - |
Calf fold | 0.748 | - | - | - | 0.805 | - |
Biceps fold | 0.501 | - | - | - | 0.586 | - |
Standing height | 0.919 | - | - | - | - | 0.914 |
Armspan | 0.850 | - | - | - | - | 0.874 |
Sitting height | 0.647 | - | - | - | - | 0.771 |
% Explained variance | - | 21.7% | 20.5% | 12.6% | 11.9% | 11.9% |
% Accumulated | - | 21.7% | 42.2% | 54.8% | 66.7% | 78.6% |
Factors | |||||
---|---|---|---|---|---|
Variable | F-Fat Mass | F-Muscle Mass | F-Bone Mass | F-Skinfolds | F-Robustness |
Abdominal fold | 0.23 | −0.03 | −0.04 | −0.09 | −0.02 |
Suprailiac fold | 0.24 | −0.07 | −0.02 | −0.11 | 0.04 |
Subscapular fold | 0.19 | −0.02 | −0.05 | −0.05 | −0.01 |
Triceps fold | 0.18 | −0.04 | −0.01 | −0.06 | 0.00 |
Pectoral fold | 0.15 | −0.12 | −0.07 | 0.11 | 0.15 |
Fat mass | 0.16 | 0.02 | 0.02 | −0.07 | 0.00 |
Body Density Index | 0.10 | −0.06 | −0.07 | 0.19 | 0.03 |
Muscular mass | −0.08 | 0.27 | −0.15 | −0.01 | 0.04 |
Weight | 0.02 | 0.10 | 0.06 | −0.05 | 0.04 |
Residual mass | 0.01 | 0.10 | 0.06 | −0.03 | 0.05 |
Body Mass Index | 0.01 | 0.18 | 0.09 | −0.06 | −0.18 |
Arm circumference | −0.05 | 0.27 | −0.22 | 0.03 | 0.04 |
Hip circumference | 0.00 | 0.13 | 0.04 | 0.00 | −0.06 |
Waist circumference | 0.08 | 0.12 | 0.00 | −0.10 | −0.07 |
Thigh circumference | −0.12 | 0.13 | 0.02 | 0.19 | −0.04 |
Calf circumference | −0.11 | 0.14 | −0.01 | 0.18 | −0.06 |
Bone mass | −0.03 | −0.10 | 0.35 | −0.04 | 0.06 |
Bistyloid of the wrist diameter | −0.03 | −0.08 | 0.36 | −0.04 | −0.08 |
Bicondylar of the femur diameter | −0.04 | −0.07 | 0.37 | −0.05 | −0.08 |
Tight fold | −0.11 | −0.01 | 0–03 | 0.39 | 0.00 |
Calf fold | −0.08 | 0.02 | −0.04 | 0.34 | 0.01 |
Biceps fold | 0.03 | −0.03 | −0.11 | 0.23 | 0.09 |
Standing height | 0.02 | −0.08 | −0.02 | 0.01 | 0.36 |
Armspan | 0.00 | −0.09 | 0.01 | 0.04 | 0.34 |
Sitting height | 0.02 | −0.01 | −0.16 | 0.05 | 0.33 |
Upper and Lower Body | Mainly Lower Body | Sedentary | M-ANOVA Test | ||||||
---|---|---|---|---|---|---|---|---|---|
N | M and SD | N | M and SD | N | M and SD | F | p-Value | R2 | |
F-Fat mass | 135 | −0.02 ± 1.01 | 216 | −0.04 ± 1.00 | 24 | 0.48 ± 0.87 | 2.97 | 0.053 | 0.016 |
F-Muscle mass | 135 | −0.37 ± 0.82 | 216 | 0.26 ± 1.03 | 24 | −0.28 ± 0.88 | 19.36 | <0.001 * | 0.094 |
F-Bone mass | 135 | −0.04 ± 0.89 | 216 | 0.01 ± 1.09 | 24 | 0.16 ± 0.73 | 0.46 | 0.629 | 0.002 |
F-Skinfolds | 135 | −0.01 ± 0.97 | 216 | −0.05 ± 1.03 | 24 | 0.51 ± 0.73 | 3.44 | 0.033 * | 0.021 |
F-Robustness | 135 | −0.22 ± 0.86 | 216 | 0.14 ± 1.07 | 24 | −0.02 ± 0.88 | 5.35 | 0.005 * | 0.028 |
Cormic Index | 194 | 51.53 ± 2.37 | 307 | 52.48 ± 2.12 | 73 | 52.4 ± 2.82 | 11.05 | <0.001 * | 0.037 |
Relative Index of the Lower Limbs | 194 | 94.52 ± 9.65 | 307 | 90.88 ± 8.15 | 73 | 91.0 ± 11.04 | 10.12 | <0.001 * | 0.034 |
Included | Λ Wilks | F Exact | p-Value | Standardized Coefficients Functions | Classification Function Coefficients | |||
---|---|---|---|---|---|---|---|---|
1 (p < 0.001) | 2 (p > 0.05) | Mainly Lower Body | Upper and Lower Body | Sedentary | ||||
F-Muscular mass | 0.91 | 19.36 | <0.001 * | 0.767 | 0.002 | −2.13 | −1.45 | −2.04 |
Cormic Index | 0.87 | 13.26 | <0.001 * | 0.540 | 0.221 | 8.90 | 9.06 | 8.98 |
F-Robustness | 0.85 | 10.30 | <0.001 * | 0.394 | 0.194 | −3.10 | −2.75 | −2.92 |
Sport | N | F-Fat Mass | F-MuscleMass | F-Bone Mass | F-Skinfolds | F-Robustness | ANOVA Repeated Measures | ||
---|---|---|---|---|---|---|---|---|---|
F | p-Value | R2 | |||||||
Airsoft | 18 | −0.53 | 0.65 | −0.15 | 0.74 | 0.09 | 4.48 ** | 0.003 * | 0.208 |
Basketball | 27 | 0.52 | −0.09 | 0.57 | −0.35 | 0.65 | 6.08 ** | <0.001 ** | 0.190 |
Handball | 33 | 0.06 | 0.04 | −0.07 | −0.35 | 0.76 | 5.92 ** | <0.001 ** | 0.156 |
Walking | 32 | 1.16 | 0.06 | −0.56 | 0.14 | −0.45 | 16.56 ** | <0.001 ** | 0.348 |
Canoe | 17 | −0.76 | 0.77 | 0.17 | −0.72 | −0.25 | 10.20 ** | <0.001 ** | 0.389 |
Cycling | 11 | −0.69 | −0.96 | 0.01 | 0.03 | −0.13 | 7.00 ** | <0.001** | 0.412 |
Football | 52 | −0.44 | −0.20 | 0.05 | −0.31 | 0.02 | 2.96 * | 0.021 * | 0.055 |
American football | 15 | 0.65 | 0.37 | 0.87 | 1.40 | 0.06 | 1.97 NS | 0.111 | 0.123 |
Gym | 16 | −0.07 | −0.04 | −0.27 | −0.11 | 0.03 | 0.34 NS | 0.848 | 0.022 |
Rugby | 24 | 0.34 | −0.15 | 0.26 | 1.16 | 0.55 | 6.05 ** | <0.001 ** | 0.208 |
Running | 40 | −0.23 | −0.77 | 0.22 | 0.25 | −0.37 | 12.12 ** | <0.001 ** | 0.237 |
Volleyball | 16 | 0.30 | −0.31 | −0.51 | −0.94 | 0.02 | 7.44 ** | <0.001 ** | 0.332 |
Sedentary lifestyle | 24 | 0.49 | −0.27 | 0.13 | 0.60 | −0.10 | 5.97 ** | <0.001 ** | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navas Harrison, D.J.; Pérez Pico, A.M.; García Blázquez, F.M.; Acevedo, R.M. Anthropometric and Kinanthropometric Distinctive Profile of a Sedentary Population Compared with an Amateur Athlete Population. Appl. Sci. 2023, 13, 2951. https://doi.org/10.3390/app13052951
Navas Harrison DJ, Pérez Pico AM, García Blázquez FM, Acevedo RM. Anthropometric and Kinanthropometric Distinctive Profile of a Sedentary Population Compared with an Amateur Athlete Population. Applied Sciences. 2023; 13(5):2951. https://doi.org/10.3390/app13052951
Chicago/Turabian StyleNavas Harrison, Daniel Jonathan, Ana María Pérez Pico, Francisco Manuel García Blázquez, and Raquel Mayordomo Acevedo. 2023. "Anthropometric and Kinanthropometric Distinctive Profile of a Sedentary Population Compared with an Amateur Athlete Population" Applied Sciences 13, no. 5: 2951. https://doi.org/10.3390/app13052951
APA StyleNavas Harrison, D. J., Pérez Pico, A. M., García Blázquez, F. M., & Acevedo, R. M. (2023). Anthropometric and Kinanthropometric Distinctive Profile of a Sedentary Population Compared with an Amateur Athlete Population. Applied Sciences, 13(5), 2951. https://doi.org/10.3390/app13052951