Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation
Abstract
:1. Introduction
2. Related Works
3. Problem Statement
4. Methodology and Approach
4.1. Tools and Hardware
4.2. Interface Setup
4.3. Physical Setup
5. Experimental Results
5.1. Data Collection
- Case 1: One frontal mirror (Figure 7a)
- Case 2: One side mirror (Figure 7b)
- Case 3: Two side mirrors (Figure 7c)
- Case 4: One front mirror and two side mirrors (Figure 7d)
5.2. Data Analysis
6. Potential Solutions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, P.; Luo, S.; Huang, X. Real-Time Dynamic SLAM Algorithm Based on Deep Learning. IEEE Access 2022, 10, 87754–87766. [Google Scholar] [CrossRef]
- Khan, M.U.; Zaidi, S.A.A.; Ishtiaq, A.; Bukhari, S.U.R.; Samer, S.; Farman, A. A Comparative Survey of LiDAR-SLAM and LiDAR based Sensor Technologies. In Proceedings of the 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Hasan, M.S.M.S.; Rahman, M.M.U.; Hossain, M.A. Recent Advances in LiDAR-based Obstacle Detection and Localization for Autonomous Vehicles. IEEE Access 2020, 8, 227482–227502. [Google Scholar]
- Carballo, A.; Lambert, J.; Cano, A.; Wong, D.R.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The Multiple 3D LiDAR Dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium, Las Vegas, NV, USA, 19 October–13 November 2020; pp. 1094–1101. [Google Scholar]
- Zhao, X.; Yang, Z.; Schwertfeger, S. Mapping with Reflection—Detection and Utilization of Reflection in 3D Lidar Scans. In Proceedings of the IEEE Inte rnational Symposium on Safety, Security, and Rescue Robotics, Abudhabi, United Arab Emirates, 4–6 November 2020; pp. 27–33. [Google Scholar] [CrossRef]
- Diosi, A.; Kleeman, L. Advanced Sonar and Laser Range Finder Fusion for Simultanious Localization and Mapping. In Proceedings of the IEEE/RSJ Interanational Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004. [Google Scholar]
- Singh, R.; Nagla, K. Multi-data sensor fusion framework to detect transparent object for the efficient mobile robot mapping. Int. J. Intell. Unmanned Syst. 2019, 7, 2–18. [Google Scholar] [CrossRef]
- Yang, S.-W.; Wang, C.-C. Dealing with laser scanner failure: Mirrors and windows. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3009–3015. [Google Scholar] [CrossRef]
- Wang, R.; Bach, J.; Ferrie, F.P. Window detection from mobile LiDAR data. In Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision, WACV, Washington, DC, USA, 5–7 January 2011; pp. 58–65. [Google Scholar] [CrossRef]
- Hao, W.; Wang, Y.; Liang, W.; Ning, X.; Li, Y. Slice-Based Window Detection from Scene Point Clouds. In Proceedings of the 2018 International Conference on Virtual Reality and Visualization (ICVRV), Qingdao, China, 22–24 October 2018; pp. 35–39. [Google Scholar] [CrossRef]
- Pu, S.; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 575–584. [Google Scholar] [CrossRef]
- Shiina, T.; Wang, Z. An indoor navigation algorithm incorporating representation of Quasi-Static Environmental Object and glass surface detection using LRF sensor. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp. 2508–2514. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.G. Detecting glass in Simultaneous Localisation and Mapping. Rob. Auton. Syst. 2017, 88, 97–103. [Google Scholar] [CrossRef]
- Kim, J.; Chung, W. Localization of a Mobile Robot Using a Laser Range Finder in a Glass-Walled Environment. IEEE Trans. Ind. Electron. 2016, 63, 3616–3627. [Google Scholar] [CrossRef]
- Tibebu, H.; Roche, J.; De Silva, V.; Kondoz, A. LiDAR-Based Glass Detection for Improved Occupancy Grid Mapping. Sensors 2021, 21, 2263. [Google Scholar] [CrossRef]
- Li, Z.; Huang, M.; Yang, Y.; Li, Z.; Wang, L. A Mirror Detection Method in the Indoor Environment Using a Laser Sensor. Math. Probl. Eng. 2022, 2022, 9621694. [Google Scholar] [CrossRef]
- Yang, S.-W.; Wang, C.-C. On Solving Mirror Reflection in LIDAR Sensing. IEEE/ASME Trans. Mechatron. 2011, 16, 255–265. [Google Scholar] [CrossRef]
- Joseph, L.; Cacace, J. Introduction to ROS. In Mastering ROS for Robotics Programming; Packt: Birmingham, UK, 2018. [Google Scholar]
- Pyo, Y.; Cho, H.; Jung, R.; Lim, T. Mobile Robots. In ROS Robot Programming; ROBOTIS Co., Ltd.: Seoul, Republic of Korea, 2017; pp. 279–308. [Google Scholar]
- Robotis. Turtlebot 3, Robotis. 2022. Available online: https://www.robotis.us/turtlebot-3/ (accessed on 10 July 2022).
- Zhang, X.; Lai, J.; Xu, D.; Li, H.; Fu, M. 2D Lidar-Based SLAM and Path Planning for Indoor Rescue Using Mobile Robots. J. Adv. Transp. 2020, 2020, 8867937. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, S.S. Survey of State-of-the-Art Mixed Data Clustering Algorithms. IEEE Access 2019, 7, 31883–31902. [Google Scholar] [CrossRef]
- Khan, K.; Rehman, S.U.; Aziz, K.; Fong, S.; Sarasvady, S. DBSCAN: Past, present and future. In Proceedings of the Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), Chennai, India, 17–19 February 2014; pp. 232–238. [Google Scholar]
Surface | Example | Primary Light Characteristic | Secondary Light Characteristic |
---|---|---|---|
Reflective Surface | Mirror | Specular | Absorption, Diffuse |
Diffuse Surface | Concrete | Diffuse | Absorption, Specular |
Transparent Surface | Glass | Transmission | Specular, Absorption, Diffuse |
Dark Surface | Black | Absorption, Diffuse | Specular |
Light Surface | White | Specular, Diffuse | Absorption |
Turtlebot 3–Waffle Pi: Specifications | |
---|---|
SBC | Raspberry Pi 3 |
Embedded Controller | OpenCR |
Sensors | Raspberry Pi 3 Camera |
360 LiDAR (LDS-01) | |
IMU (3-axis gyroscope, accelerometer, magnetometer) | |
LDS Specifications | |
Detection Distance | 120~3500 mm |
Distance Precision | ±15 mm ±5.0% |
Distance Accuracy | ±10 mm ±3.5% |
Scan Rate | 300 ± 10 rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damodaran, D.; Mozaffari, S.; Alirezaee, S.; Ahamed, M.J. Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation. Appl. Sci. 2023, 13, 2908. https://doi.org/10.3390/app13052908
Damodaran D, Mozaffari S, Alirezaee S, Ahamed MJ. Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation. Applied Sciences. 2023; 13(5):2908. https://doi.org/10.3390/app13052908
Chicago/Turabian StyleDamodaran, Deeptha, Saeed Mozaffari, Shahpour Alirezaee, and Mohammed Jalal Ahamed. 2023. "Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation" Applied Sciences 13, no. 5: 2908. https://doi.org/10.3390/app13052908
APA StyleDamodaran, D., Mozaffari, S., Alirezaee, S., & Ahamed, M. J. (2023). Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation. Applied Sciences, 13(5), 2908. https://doi.org/10.3390/app13052908