Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics (Table 1)
Group (Type of Crossbite) | Number of Patients (Male/Female) | Total Mean Number of Aligners (SD), Including Refinements | Mean Treatment Time for the First Set of Aligners in Months (SD) | % of Patients that Used Intermaxillary Elastics |
---|---|---|---|---|
Unilateral | 15 (7/8) | 28 (7.05) | 15.5 (4.88) | 73% |
Bilateral | 15 (6/9) | 32 (15.57) | 15.2 (7.54) | 66.67% |
Single-Tooth | 16 (7/9) | 31 (10.23) | 14 (3.58) | 46.67% |
3.2. Expansion Efficacy
3.3. Expansion Predictability
4. Discussion
5. Conclusions
- In all three crossbite groups, the largest expansion was achieved at the second premolar level. Second premolars showed the highest percentage of initial width increased by treatment in all groups, too, except the single-tooth group, where similar percentages for the first and second premolars were found.
- In all three groups, the planned expansion was greater than the observed expansion. In the unilateral and bilateral crossbite groups, the highest predictability (79.19% and 86.02%, respectively) was for the second interpremolar width. In the single-tooth crossbite group, the highest predictability (90.15%) was for expansion at the first premolar level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Burruezo, I.; Gandía-Franco, J.L.; Cobo, J.; Vela-Hernández, A.; Bellot-Arcís, C. Arch expansion with the Invisalign system: Efficacy and predictability. PLoS ONE 2020, 15, e0242979. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, P.M.; Treccani, M.; Carlsson, K. Transversal maxillary dento-alveolar changes in patients treated with active and passive self-ligating brackets: A randomized clinical trial using CBCT-scans and digital models. Orthod. Craniofac. Res. 2011, 14, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Arqub, S.A. Biomechanics of clear aligners: Hidden truths and first principles. J. World Fed. Orthod. 2022, 11, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Castañer-Peiro, A. Interceptive orthodontics: The need for early diagnosis and treatment of posterior crossbites. Med. Oral. Patol. Oral. Cir. Bucal. 2006, 11, 210–214. [Google Scholar]
- Boyd, R.; Vlaskalic, V. Three-dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions with the Invisalign Appliance. Semin. Orthod. 2001, 7, 274–293. [Google Scholar] [CrossRef]
- Pavoni, C.; Lione, R.; Laganà, G.; Cozza, P. Self-ligating versus Invisalign: Analysis of dento-alveolar effects. Ann. Stomatol. 2011, 2, 23–27. [Google Scholar]
- Ke, Y.; Zhu, Y.; Zhu, M. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Castroflorio, T.; Sedran, A.; Parrini, S.; Garino, F.; Reverdito, M.; Capuozzo, R.; Mutinelli, S.; Grybauskas, S.; Vaitiekūnas, M.; Deregibus, A. Predictability of orthodontic tooth movement with aligners: Effect of treatment design. Prog. Orth. 2023, 24, 2. [Google Scholar] [CrossRef]
- Lione, R.; Paoloni, V.; Bartolommei, L.; Gazzani, F.; Meuli, S.; Pavoni, C.; Cozza, P. Maxillary arch development with Invisalign system: Analysis of expansion dental movements on digital dental casts. Angle. Orthod. 2021, 91, 433–440. [Google Scholar] [CrossRef]
- Solano-Mendoza, B.; Sonnemberg, B.; Solano-Reina, E.; Iglesias-Linares, A. How effective is the Invisalign® system in expansion movement with Ex30′aligners. Clin. Oral Investig. 2017, 21, 1475–1484. [Google Scholar] [CrossRef]
- Houle, J.P.; Piedade, L.; Todescan, R.; Pinheiro, F.H.S.L. The predictability of transverse changes with Invisalign. Angle Orthod. 2017, 87, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, L.O.; Piedade, L.; Lekic, M.; Cunha, R.S.; Wiltshire, W.A. Changes in mandibular incisor position and arch form resulting from Invisalign correction of the crowded dentition treated nonextraction. Angle Orthod. 2016, 86, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünheid, T.; Gaalaas, S.; Hamdan, H.; Larson, B.E. Effect of clear aligner therapy on the buccolingual inclination of mandibular canines and the intercanine distance. Angle Orthod. 2016, 86, 10–16. [Google Scholar] [CrossRef]
- Garnett, B.S.; Mahood, K.; Nguyen, M.; Al-Khateeb, A.; Liu, S.; Boyd, R.; Oh, H. Cephalometric comparison of adult anterior open bite treatment using clear aligners and fixed appliances. Angle Orthod. 2019, 89, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renkema, A.M.; Fudalej, P.S.; Renkema, A.; Kiekens, R.; Katsaros, C. Development of labial gingival recessions in orthodontically treated patients. Am. J. Orthod. Dentofacial. Orthop. 2013, 143, 206–212. [Google Scholar] [CrossRef]
- Vasconcelos, G.; Kjellsen, K.; Preus, H.; Vandevska-Radunovic, V.; Hansen, B.F. Prevalence and severity of vestibular recession in mandibular incisors after orthodontic treatment. Angle Orthod. 2012, 82, 42–47. [Google Scholar] [CrossRef]
- Vidal, M.L.; Vilches, A.; Biedma, M.; Solano, E.; Solano, B. Predictibilidad de la expansión dentoalveolar de la arcada inferior con el sistema Invisalign®. Ortod. Esp. 2021, 1, 27–33. [Google Scholar]
- Kesling, H.D. The philosophy of the tooth positioning appliance. Am. J. Orthod. 1945, 31, 297–304. [Google Scholar] [CrossRef]
- Boyd, R.L. Complex orthodontic treatment using a new protocol for the Invisalign appliance. J. Clin. Orthod. 2007, 41, 525–547. [Google Scholar]
- Boyd, R.L. Esthetic Orthodontic Treatment Using the Invisalign Appliance for Moderate to Complex Malocclusions. J. Dent. Educ. 2008, 72, 948–967. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.; Nota, A.; Ehsani, S.; Maddalone, E.; Ojima, K.; Tecco, S. Impact of molar teeth distalization with clear aligners on occlusal vertical dimension: A retrospective study. BMC Oral Health 2019, 19, 182. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Lesmes, J.C.; Yeste-Ojeda, F.; Nogal-Coloma, A. Biomecánica en ortodoncia transparente. Rev. Esp. Ortod. 2018, 48, 5–13. [Google Scholar]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabs, D.A. Improving the reporting of clinical case series. Am. J. Ophthalmol. 2005, 139, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: A simulation study. BMC Med. Res. Methodol. 2001, 1, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How well does Invisalign work? A prospective clinical study evaluating the efficace of tooth movement with Invisalign. Am. J. Orthod. Dentofacial. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef]
- Charalampakis, O.; Iliadi, A.; Ueno, H.; Oliver, D.R.; Kim, K.B. Accuracy of clear aligners: A retrospective study of patients who needed refinement. Am. J. Orthod. Dentofacial. Orthop. 2018, 154, 47–54. [Google Scholar] [CrossRef]
Within-Group Comparisons T3-T1 | Mean ± SD | T3-T1 (mm) | 95%CI | p-Value | T3-T1 (%) | ||
---|---|---|---|---|---|---|---|
Unilateral Crossbite | Canine | T1: PRE | 33.58 ± 2.95 | −0.14 | −1.37 to 1.65 | 1 | −0.42% |
T3: POST | 33.44 ± 1.74 | ||||||
1st Premolar | T1: PRE | 39.65 ± 2.49 | 1.65 | −2.76 to −0.55 | 0.004 | 4.16% | |
T3: POST | 41.30 ± 2.44 | ||||||
2nd Premolar | T1: PRE | 44.32 ± 2.60 | 2.54 | −3.99 to −1.10 | 0.001 | 5.75% | |
T3: POST | 46.87 ± 1.99 | ||||||
1st Molar | T1: PRE | 48.85 ± 2.65 | 2.08 | −3.35 to −0.81 | 0.002 | 4.26% | |
T3: POST | 50.93 ± 2.08 | ||||||
Bilateral Crossbite | Canine | T1: PRE | 32.37 ± 2.56 | 0.91 | −3.08 to −0.29 | 0.016 | 2.81% |
T3: POST | 33.28 ± 1.89 | ||||||
1st Premolar | T1: PRE | 37.82 ± 3.10 | 3.38 | −4.91 to −1.86 | <0.001 | 8.96% | |
T3: POST | 41.21 ± 2.69 | ||||||
2nd Premolar | T1: PRE | 41.53 ± 3.95 | 4.86 | −6.84 to −2.87 | <0.001 | 11.70% | |
T3: POST | 46.39 ± 3.17 | ||||||
1st Molar | T1: PRE | 46.35 ± 3.16 | 3.95 | −5.33 to −2.58 | <0.001 | 8.52% | |
T3: POST | 50.30 ± 3.20 | ||||||
Single-Tooth Crossbite | Canine | T1: PRE | 32.19 ± 1.81 | 1.01 | −1.82 to −0.20 | 0.013 | 3.14% |
T3: POST | 33.20 ± 2.10 | ||||||
1st Premolar | T1: PRE | 37.64 ± 3.13 | 3.02 | −4.17 to −1.88 | <0.001 | 8.05% | |
T3: POST | 40.67 ± 2.53 | ||||||
2nd Premolar | T1: PRE | 42.59 ± 3.56 | 3.41 | −4.63 to −2.19 | <0.001 | 8.01% | |
T3: POST | 46 ± 2.91 | ||||||
1st Molar | T1: PRE | 47.10 ± 3.69 | 2.67 | −4.03 to −1.30 | <0.001 | 5.67% | |
T3: POST | 49.77 ± 3.53 |
Between-Group Comparisons | BILAT Vs. UNILAT | Single Tooth Vs. UNILAT | Single Tooth Vs. BILAT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Difference | 95% CI | Mean Difference | 95% CI | Mean Difference | 95% CI | |||||
Lower Lim | Upper Lim | Lower Lim | Upper Lim | Lower Lim | Upper Lim | |||||
3-3 width changes (mm) | T3 − T1 | 1.06 | −0.53 | 2.65 | 1.15 | −0.41 | 2.72 | 0.097 | −1.47 | 1.66 |
T2 − T3 | −0.48 | −1.2 | 0.25 | −0.04 | −0.75 | 0.68 | 0.44 | −0.28 | 1.15 | |
ANOVA p-value | 0.142 | |||||||||
4-4 width changes (mm) | T3 − T1 | 1.73 * | 0.06 | 3.39 | 1.37 | −0.27 | 3.01 | −0.36 | −2 | 1.28 |
T2 − T3 | 0.05 | −1.09 | 0.98 | −0.35 | −0.67 | 1.37 | −0.4 | −0.62 | 1.42 | |
ANOVA p-value | 0.03 * | |||||||||
5-5 width changes (mm) | T3 − T1 | 2.31 * | 0.25 | 4.37 | 0.87 | −1.16 | 2.9 | −1.45 | −3.48 | 0.58 |
T2 − T3 | 0.13 | −1.23 | 0.99 | −0.28 | −0.81 | 1.37 | −0.41 | −0.69 | 1.49 | |
ANOVA p-value | 0.026 * | |||||||||
6-6 width changes (mm) | T3 − T1 | 1.87 * | 0.11 | 3.63 | 0.59 | −1.15 | 2.32 | −1.28 | −3.02 | 0.45 |
T2 − T3 | 0.02 | −1.23 | 1.2 | −0.33 | −0.87 | 1.52 | −0.35 | −0.86 | 1.54 | |
ANOVA p-value | 0.034 * |
Within-Group Comparisons T2 − T3 | Mean (mm) ± SD | T2-T3 (mm) | 95% CI | p-Value | T2-T3 (%) | % Relative Predictability: (T3-T1 × 100/T2-T1) | ||
---|---|---|---|---|---|---|---|---|
Unilateral Crossbite | Canine | T2: PRED | 33.73 ± 1.88 | 0.29 | −0.30 to 0.88 | 0.597 | 0.87% | −93.33% |
T3: POST | 33.44 ± 1.74 | |||||||
1st Premolar | T2: PRED | 41.98 ± 1.97 | 0.68 | −0.36 to 1.72 | 0.296 | 1.65% | 70.82% | |
T3: POST | 41.30 ± 2.44 | |||||||
2nd Premolar | T2: PRED | 47.54 ± 1.99 | 0.67 | −0.27 to 1.62 | 0.221 | 1.43% | 79.19% | |
T3: POST | 46.87 ± 1.99 | |||||||
1st Molar | T2: PRED | 51.65 ± 2.07 | 0.72 | −0.22 to 1.66 | 0.167 | 1.41% | 74.29% | |
T3: POST | 50.93 ± 2.08 | |||||||
Bilateral Crossbite | Canine | T2: PRED | 34.05 ± 2.04 | 0.77 | 0.17 to 1.37 | 0.011 | 2.31% | 54.17% |
T3: POST | 33.28 ± 1.89 | |||||||
1st Premolar | T2: PRED | 41.94 ± 2.60 | 0.73 | −0.01 to 1.47 | 0.053 | 1.77% | 82.28% | |
T3: POST | 41.21 ± 2.69 | |||||||
2nd Premolar | T2: PRED | 47.18 ± 3.06 | 0.80 | −0.20 to 1.80 | 0.145 | 1.70% | 86.02% | |
T3: POST | 46.39 ± 3.17 | |||||||
1st Molar | T2: PRED | 51.03 ± 3.44 | 0.74 | −0.32 to 1.79 | 0.239 | 1.45% | 84.40% | |
T3: POST | 50.30 ± 3.20 | |||||||
Single-Tooth Crossbite | Canine | T2: PRED | 33.53 ± 1.85 | 0.33 | −0.15 to 0.80 | 0.243 | 0.99% | 75.37% |
T3: POST | 33.20 ± 2.10 | |||||||
1st Premolar | T2: PRED | 40.99 ± 2.63 | 0.32 | −0.21 to 0.87 | 0.365 | −0.53% | 90.15% | |
T3: POST | 40.67 ± 2.53 | |||||||
2nd Premolar | T2: PRED | 46.39 ± 3.01 | 0.39 | −0.15 to 0.94 | 0.213 | 0.85% | 89.74% | |
T3: POST | 46 ± 2.91 | |||||||
1st Molar | T2: PRED | 51.16 ± 3.48 | 0.39 | −0.39 to 1.18 | 0.58 | 2.79% | 65.76% | |
T3: POST | 49.77 ± 3.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogal-Coloma, A.; Yeste-Ojeda, F.; Rivero-Lesmes, J.C.; Martin, C. Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites. Appl. Sci. 2023, 13, 2963. https://doi.org/10.3390/app13052963
Nogal-Coloma A, Yeste-Ojeda F, Rivero-Lesmes JC, Martin C. Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites. Applied Sciences. 2023; 13(5):2963. https://doi.org/10.3390/app13052963
Chicago/Turabian StyleNogal-Coloma, Ana, Fara Yeste-Ojeda, Juan Carlos Rivero-Lesmes, and Conchita Martin. 2023. "Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites" Applied Sciences 13, no. 5: 2963. https://doi.org/10.3390/app13052963
APA StyleNogal-Coloma, A., Yeste-Ojeda, F., Rivero-Lesmes, J. C., & Martin, C. (2023). Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites. Applied Sciences, 13(5), 2963. https://doi.org/10.3390/app13052963