Anti-Mutagenic and Immunomodulatory Effects of Astragali Radix Extract on a Cyclophosphamide-Induced Immunosuppressed Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. High-Performance Liquid Chromatography Analyses
2.3. Laboratory Animals
- Intact vehicle control: distilled-water administered intact control mice;
- CPA control: CPA-treated and distilled-water administered control mice;
- EAP200: CPA-treated and EAP (200 mg/kg; containing 26 mg/kg of β-1,3/1,6-glucan) administered mice;
- AR100: CPA-treated and AR (100 mg/kg) administered mice;
- AR200: CPA-treated and AR (200 mg/kg) administered mice;
- AR400: CPA-treated and AR (400 mg/kg) administered mice.
2.4. Induction of Immunosuppression
2.5. Dose Frequency
2.6. Observation Items
2.7. Statistical Analyses
3. Results
3.1. Content of Calycosin 7-O-β-D-Glucoside in AR Extract
3.2. Changes in Body Weight
3.3. Cytotoxicity to Splenocytes
3.4. Changes in Splenocyte Proliferation Rate by ConA
3.5. Changes in Splenocyte Proliferation Rate by LPS
3.6. Micronucleus Test on Bone Marrow Cells
3.7. Changes in Lymph Organ Weight
3.8. Hematological Changes
3.9. Changes in Blood Cytokine—IFN-γ, TNF-α, IL-1β, IL-6 and IL-12 Contents
3.10. Changes in Cytokine—IFN-γ, TNF-α, IL-1β, IL-6, and IL-12 Content in Spleen Tissue
3.11. Changes in NK Cell Activity
3.12. Changes in NF-κB, IFN-γ, TNF-α, IL-1β, IL-6, and IL-12 mRNA Expression in Spleen Tissue
3.13. Histopathological Changes
3.13.1. Histopathological Changes in the Thymus
3.13.2. Histopathological Changes in the Spleen
3.13.3. Histopathological Changes in Submandibular Lymph Nodes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019, 15, 3160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, D.; Shrivastava, A. Indigenous Herbal Medicines: Tribal Formulations and Traditional Herbal Practices, 1st ed.; Aavishkar Publishers: Jaipur, India, 2008; pp. 1–444. [Google Scholar]
- Kajaria, D.; Tripathi, J.S.; Tiwari, S.K.; Pandey, B.L. Immunomodulatory effect of ethanolic extract of Shirishadi compound. Ayu 2013, 34, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.S.; Singh, M.R.; Sharma, V.; Yadav, N.; Sangwan, N.S.; Singh, D. Traditional Indian knowledge of immunity from plants. In Plants and Phytomolecules for Immunomodulation; Sangwan, N.S., Farag, M.A., Modolo, L.V., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Heroor, S.; Beknal, A.K.; Mahurkar, N. Immunomodulatory activity of methanolic extracts of fruits and bark of Ficus glomerata Roxb. in mice and on human neutrophils. Indian J. Pharmacol. 2013, 45, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.B.; Panchal, S.J. Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother. Res. 2012, 26, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Roy, A.; Das, S.; Chatterjee, I.; Roy, S.; Chakraborty, R. Anti-inflammatory effects of different dietary antioxidants. In Plant Antioxidants and Health; Reference Series in Phytochemistry; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer: Cham, Switzerland, 2022; pp. 573–797. [Google Scholar]
- Kour, J.; Ali, M.N.; Ganaie, H.A.; Tabassum, N. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense. Toxicol. Rep. 2017, 4, 226–233. [Google Scholar] [CrossRef]
- Ayas, M.; Siddiqui, K.; Al-Jefri, A.; Al-Ahmari, A.; Ghemlas, I.; Al-Saedi, H.; Alanazi, A.; Jafri, R.; Ayas, M.F.; Al-Seraihi, A. Successful outcome in patients with Fanconi anemia undergoing T cell-replete mismatched related donor hematopoietic cell transplantation using reduced-dose cyclophosphamide post-transplantation. Biol. Blood Marrow Transplant. 2019, 25, 2217–2221. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.W.; Kim, Y.-K.; Ku, S.K.; Lee, H.-J. Immunoenhancement effects of the herbal formula hemomine on cyclophosphamide-induced immunosuppression in mice. Appl. Sci. 2022, 12, 4935. [Google Scholar] [CrossRef]
- Araujo-Lima, C.F.; Christoni, L.S.A.; Justo, G.; Soeiro, M.N.C.; Aiub, C.A.F.; Felzenszwalb, I. Atorvastatin downregulates in vitro methyl methanesulfonate and cyclophosphamide alkylation-mediated cellular and DNA injuries. Oxid. Med. Cell. Longev. 2018, 2018, 7820890. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Choi, J.-S.; Seol, D.J.; Choung, J.J.; Ku, S.K. Immunomodulatory effects of kuseonwangdogo-based mixed herbal formula extracts on a cyclophosphamide-induced immunosuppression mouse model. eCAM 2018, 2018, 6017412. [Google Scholar] [CrossRef] [Green Version]
- Swan, D.; Gurney, M.; Krawczyk, J.; Ryan, A.E.; O’Dwyer, M. Beyond DNA damage: Exploring the immunomodulatory effects of cyclophosphamide in multiple myeloma. HemaSphere 2020, 4, e350. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.T.; Li, J.; Wang, H.L.; Cheng, W.M.; Zhang, L.; Ge, J.F. Immunomodulating effects of fractioned polysaccharides isolated from Yu-Ping-Feng-Powder in cyclophosphamide-treated mice. Am. J. Chin. Med. 2006, 34, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Kim, J.W.; Cho, H.R.; Moon, S.B.; Shin, H.D.; Yang, K.J.; Lee, H.S.; Kwon, Y.S.; Ku, S.K. Immunomodulatory effects of Aureobasidium pullulans SM-2001 exopolymers on the cyclophosphamide-treated mice. J. Microbiol. Biotechnol. 2010, 20, 438–445. [Google Scholar] [CrossRef]
- Sharma, V.; Thakur, M.; Chauhan, N.S.; Dixit, V.K. Immunomodulatory activity of petroleum ether extract of Anacyclus pyrethrum. Pharm. Biol. 2010, 48, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Ku, S.K.; Han, J.S. Genotoxicity testing of low molecular weight fucoidan from brown seaweeds. Food Chem. Toxicol. 2012, 50, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Choi, S.H.; Kang, S.J.; Song, C.H.; Park, S.J.; Lee, Y.J.; Ku, S.K. Genotoxicity testing of Persicariae Rhizoma (Persicaria tinctoria H. Gross) aqueous extracts. Exp. Ther. Med. 2016, 12, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Raa, J. Immune modulation by non-digestible and non-absorbable beta-1,3/1,6-glucan. Microb. Ecol. Health Dis. 2015, 26, 27824. [Google Scholar] [CrossRef]
- Thomas, S.; Rezoagli, E.; Abidin, I.Z.; Major, I.; Murray, P.; Murphy, E.J. β-Glucans from yeast—Immunomodulators from novel waste resources. Appl. Sci. 2022, 12, 5208. [Google Scholar] [CrossRef]
- Castro, E.D.M.; Calder, P.C.; Roche, H.M. β-1,3/1,6-glucans and immunity: State of the art and future directions. Mol. Nutr. Food Res. 2021, 65, e1901071. [Google Scholar] [CrossRef]
- Jung, M.Y.; Kim, J.W.; Kim, K.Y.; Choi, S.H.; Ku, S.K. Polycan, a β-glucan from Aureobasidium pullulans SM-2001, mitigates ovariectomy-induced osteoporosis in rats. Exp. Ther. Med. 2016, 12, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, S.K.; Lee, Y.J.; Lee, S.D.; Cho, H.R.; Moon, S.B.; Kim, K.Y.; Kwon, Y.S.; Kim, J.W. Nephroprotective effect of Polycan on acute renal failure induced by cisplatin in rats. ISRN Vet. Sci. 2012, 2012, 862104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.D.; Cho, H.R.; Moon, S.B.; Shin, H.D.; Yang, K.J.; Park, B.R.; Jang, H.J.; Kim, L.S.; Lee, H.S.; Ku, S.K. Effects of β-glucan from Aureobasidum pullulans on acute inflammation in mice. Arch. Pharm. Res. 2007, 30, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Kim, J.W.; Cho, H.R.; Kim, K.Y.; Min, Y.H.; Park, J.H.; Kim, J.S.; Park, J.H.; Seo, B.I.; Roh, S.S. Effect of β-glucan originated from Aureobasidium pullulans on asthma induced by ovalbumin in mouse. Arch. Pharm. Res. 2012, 35, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Cho, H.R.; Ku, S.K. Efficacy test of Polycan, a beta-glucan originated from Aureobasidium pullulans SM-2001, on anterior cruciate ligament transection and partial medial meniscectomy-induced-osteoarthritis rats. J. Microbiol. Biotechnol. 2012, 22, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kang, S.J.; Kim, J.W.; Cho, H.R.; Moon, S.B.; Kim, K.Y.; Lee, H.S.; Han, C.H.; Ku, S.K.; Lee, Y.J. Effects of Polycan, a β-glucan, on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats. J. Periodontal. Res. 2012, 47, 800–810. [Google Scholar] [CrossRef]
- Yoo, J.H.; Lee, Y.S.; Ku, S.K.; Lee, H.J. Phellinus baumii enhances the immune response in cyclophosphamide-induced immunosuppressed mice. Nutr. Res. 2020, 75, 15–31. [Google Scholar] [CrossRef]
- Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Zhang, W.; Dhananjay, Y.; An, E.K.; Kwak, M.; You, S.; Lee, P.C.; Jin, J.O. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int. J. Biol. Macromol. 2021, 182, 1292–1300. [Google Scholar] [CrossRef]
- Latour, E.; Arlet, J.; Latour, E.E.; Juszkiewicz, A.; Łuczkowska, K.; Marcinkiewicz, A.; Basta, P.; Trzeciak, J.; Machaliński, B.; Skarpańska-Stejnborn, A. Standardized astragalus extract for attenuation of the immunosuppression induced by strenuous physical exercise: Randomized controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 57. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, B.; Luo, X. Clinical study of astragalus’s preventing the recurrence of asthma in children. Chin. J. Integ. Trad. West Med. 2011, 31, 1090–1092. [Google Scholar]
- Chen, S.M.; Tsai, Y.S.; Lee, S.W.; Liu, Y.H.; Liao, S.K.; Chang, W.W.; Tsai, P.J. Astragalus membranaceus modulates Th1/2 immune balance and activates PPARγ in a murine asthma model. Biochem. Cell Biol. 2014, 92, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Tsai, W.J.; Loke, S.H.; Wu, T.S.; Chiou, W.F. Astragalus membranaceus flavonoids (AMF) ameliorate chronic fatigue syndrome induced by food intake restriction plus forced swimming. J. Ethnopharmacol. 2009, 122, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xiao, B.; Sun, T. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2013, 62, 287–290. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.H.; Park, S.K.; Chang, M.S. Astragalus membranaceus ameliorates reproductive toxicity induced by cyclophosphamide in male mice. Phytother. Res. 2012, 26, 1418–1421. [Google Scholar] [CrossRef]
- Simon, P.; Frankowski, M.; Bock, N.; Neukammer, J. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer. Lab. Chip. 2016, 16, 2326–2338. [Google Scholar] [CrossRef]
- Gebretsadkan, G.; Tessema, K.; Ambachew, H.; Birhaneselassie, M. The comparison between microhematocrit and automated methods for hematocrit determination. Int. J. Blood Res. Disord. 2015, 2, 1–3. [Google Scholar] [CrossRef]
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.M.; Raine, L.; Fanger, H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 1981, 29, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.E.; Yang, G.; Choi, J.S.; Lee, J.Y. Suppression of primary splenocyte proliferation by Artemisia capillaris and its components. Toxicol. Res. 2017, 33, 283–290. [Google Scholar] [CrossRef] [Green Version]
- OECD Council. OECD TG 474: Mammalian Erythrocyte Micronuclear Test. 29 July 2016. Available online: https://read.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en#page1 (accessed on 22 February 2023).
- Fox, J.G.; Cohen, B.J.; Loew, F.M. Laboratory Animal Medicine; Academic Press Inc.: Orlando, FL, USA, 1984. [Google Scholar]
- Tajima, Y. Biological Reference Data Book on Experimental Animals; Soft Science Inc.: Tokyo, Japan, 1989. [Google Scholar]
- Chargari, C.; Toillon, R.A.; Macdermed, D.; Castadot, P.; Magné, N. Concurrent hormone and radiation therapy in patients with breast cancer: What is the rationale? Lancet Oncol. 2009, 10, 53–60. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, Y.J.; Choi, H.Y.; Shin, Y.K.; Kim, J.D.; Ku, S.K. In vivo and in vitro antitumor effects of Platycodin D, a saponin purified from Platycodi Radix on the H520 lung cancer cell. eCAM 2014, 2014, 478653. [Google Scholar] [PubMed] [Green Version]
- Cerqueira, F.; Cordeiro-Da-Silva, A.; Gaspar-Marques, C.; Simoes, F.; Pinto, M.M.; Nascimento, M.S. Effect of abietane diterpenes from Plectranthus grandidentatus on T- and B-lymphocyte proliferation. Bioorg. Med. Chem. 2004, 12, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.K.; Cheon, W.H.; Ku, S.K. Micronucleus test of Picrorrhiza Rhizoma aqueous extract in bone marrow cells of male ICR mice. Toxicol. Res. 2011, 27, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Xu, J.; Chen, L. Anti-mutagenicity of selenium-enriched rice on mice exposure to cyclophosphamide and mitomycin C. Cancer Lett. 2005, 220, 29–35. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Mehta, A.K.; Gracias, D.T.; Croft, M. TNF activity and T cells. Cytokine 2018, 101, 14–18. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [Green Version]
- Lan, T.; Chang, L.; Wu, L.; Yuan, Y.F. IL-6 plays a crucial role in HBV infection. J. Clin. Transl. Hepatol. 2015, 3, 271–276. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Hamza, T.; Barnett, J.B.; Li, B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci. 2010, 11, 789–806. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.S.; Hwang, S.H.; Shin, K.S.; Yu, K.W.; Lee, K.H.; Choi, J.S.; Park, W.M.; Yoon, T.J. Anti-metastatic activity of glycoprotein fractionated from Acanthpanax senticosus, involvement of NK-cell and macrophage activation. Arch. Pharm. Res. 2004, 27, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.M.; Hwang, I.G. In vitro effect of Yuza (Citrus junos SIEB ex. TANAKA) extracts on proliferation of human prostate cancer cells and antioxidant activity. Korean J. Food Sci. Technol. 2004, 36, 339–344. [Google Scholar]
- Jung, J.W.; Chun, J.H.; Lee, J.S.; Kim, S.W.; Lee, A.R.; Kim, J.; Lazarte, J.M.S.; Kim, Y.R.; Kim, H.J.; Thompson, K.D.; et al. Characterization of CD4-positive lymphocytes in the antiviral response of olive flounder (Paralichthys oliveceus) to nervous necrosis virus. Int. J. Mol. Sci. 2020, 21, 4180. [Google Scholar] [CrossRef] [PubMed]
- Burnet, M. The helper T-cell responses. In Immunology an Introduction, 4th ed.; Tizard, I.R., Ed.; Saunders: Philadelphia, PA, USA, 1995; pp. 139–154. [Google Scholar]
- Böger, R.H. The pharmacodynamics of l-arginine 1,2,3. J. Nutr. 2007, 137, S1650–S1655. [Google Scholar] [CrossRef] [Green Version]
- Brasier, A.R. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 2006, 6, 111–130. [Google Scholar] [CrossRef]
- Gilmore, T.D. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene 2006, 25, 6680–6684. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Gerondakis, S.; Siebenlist, U. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2010, 2, a000182. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.M.; Gregg, M.; Hashemi, F.; Schott, L.; Hughes, T.K. Corticotropin releasing factor (CRF) activation of NF-kappaB-directed transcription in leukocytes. Cell Mol. Neurobiol. 2006, 26, 1021–1036. [Google Scholar] [CrossRef]
Groups | Body Weights at: | Body Weight Gains [B–A] | |||
---|---|---|---|---|---|
First Test Substance Administration [A] * | First CPA Treatment | Second CPA Treatment | At Sacrifice [B] * | ||
Controls | |||||
Intact | 32.21 ± 2.24 | 40.56 ± 2.00 | 40.82 ± 2.01 | 37.93 ± 2.16 | 5.72 ± 0.84 |
CPA | 32.30 ± 1.57 | 40.69 ± 1.65 | 40.81 ± 1.54 | 37.77 ± 1.54 | 5.47 ± 0.61 |
EAP200 | 32.09 ± 1.66 | 40.30 ± 1.80 | 40.32 ± 1.78 | 37.37 ± 1.96 | 5.28 ± 0.80 |
Test materials | |||||
AR400 | 32.34 ± 1.64 | 40.78 ± 1.81 | 40.97 ± 1.75 | 37.99 ± 1.76 | 5.65 ± 0.87 |
AR200 | 32.24 ± 2.12 | 40.51 ± 2.23 | 40.59 ± 2.36 | 37.65 ± 2.42 | 5.41 ± 0.85 |
AR100 | 31.96 ± 1.42 | 40.62 ± 1.96 | 40.60 ± 2.07 | 37.61 ± 2.09 | 5.65 ± 1.15 |
Groups | Bone Marrow Cell Smear Cytology | ||
---|---|---|---|
MNPCE Numbers (Cells/2000 PCEs) | PCE Numbers (Cells/500 Erythrocytes) | PCE/(NCE + PCE) | |
Controls | |||
Intact | 0.70 ± 0.67 | 240.30 ± 20.94 | 0.48 ± 0.04 |
CPA | 84.60 ± 10.05 d | 129.10 ± 7.43 a | 0.26 ± 0.01 d |
EAP200 | 55.40 ± 11.21 de | 169.40 ± 11.82 ac | 0.34 ± 0.02 de |
Test materials | |||
AR400 | 32.90 ± 16.72 de | 219.10 ± 11.18 bc | 0.44 ± 0.02 e |
AR200 | 44.90 ± 13.63 de | 194.00 ± 21.34 ac | 0.39 ± 0.04 de |
AR100 | 56.20 ± 10.60 de | 168.40 ± 15.58 ac | 0.34 ± 0.03 de |
Groups | Absolute Weights (g) | Relative Weights (% of Body Weights) | ||||
---|---|---|---|---|---|---|
Thymus | Spleen | LN | Thymus | Spleen | LN | |
Controls | ||||||
Intact | 0.069 ± 0.007 | 0.123 ± 0.009 | 0.015 ± 0.003 | 0.181 ± 0.021 | 0.326 ± 0.024 | 0.039 ± 0.007 |
CPA | 0.014 ± 0.003 a | 0.048 ± 0.008 a | 0.003 ± 0.001 c | 0.037 ± 0.006 a | 0.127 ± 0.023 a | 0.008 ± 0.002 c |
EAP200 | 0.028 ± 0.007 ab | 0.068 ± 0.008 ab | 0.006 ± 0.001 cd | 0.073 ± 0.017 ab | 0.181 ± 0.025 ab | 0.015 ± 0.012 cd |
Test materials | ||||||
AR400 | 0.046 ± 0.010 ab | 0.084 ± 0.012 ab | 0.009 ± 0.002 cd | 0.121 ± 0.023 ab | 0.221 ± 0.039 ab | 0.023 ± 0.005 cd |
AR200 | 0.035 ± 0.008 ab | 0.075 ± 0.007 ab | 0.007 ± 0.001 cd | 0.094 ± 0.019 ab | 0.200 ± 0.022 ab | 0.018 ± 0.004 cd |
AR100 | 0.028 ± 0.010 ab | 0.067 ± 0.007 ab | 0.006 ± 0.001 cd | 0.073 ± 0.024 ab | 0.179 ± 0.021 ab | 0.015 ± 0.002 cd |
Groups | Controls | Reference | Test Materials | |||
---|---|---|---|---|---|---|
Intact | CPA | EAP200 | AR400 | AR200 | AR100 | |
WBC (K/μL) | 7.61 ± 0.48 | 0.55 ± 0.14 c | 1.09 ± 0.10 cd | 3.09 ± 1.00 cd | 2.14 ± 0.79 cd | 1.08 ± 0.15 cd |
Differential count | ||||||
LYM% | 77.93 ± 2.41 | 78.55 ± 2.26 | 78.05 ± 2.58 | 78.04 ± 1.40 | 77.98 ± 1.36 | 78.30 ± 2.18 |
NEU% | 15.71 ± 2.37 | 15.74 ± 1.91 | 15.79 ± 1.94 | 15.88 ± 0.97 | 15.73 ± 1.71 | 15.50 ± 1.75 |
MONO% | 3.94 ± 1.51 | 4.16 ± 1.12 | 4.21 ± 1.25 | 4.14 ± 1.22 | 4.18 ± 1.12 | 4.17 ± 1.35 |
EOS% | 0.23 ± 0.13 | 0.24 ± 0.20 | 0.24 ± 0.21 | 0.25 ± 0.19 | 0.25 ± 0.16 | 0.25 ± 0.19 |
BASO% | 0.31 ± 0.14 | 0.30 ± 0.12 | 0.31 ± 0.14 | 0.28 ± 0.15 | 0.30 ± 0.15 | 0.31 ± 0.14 |
RBC (M/μL) | 8.42 ± 0.60 | 4.95 ± 0.44 c | 6.25 ± 0.26 cd | 7.40 ± 0.34 cd | 6.87 ± 0.50 cd | 6.24 ± 0.25 cd |
HGB (g/dL) | 19.81 ± 1.26 | 12.11 ± 0.45 c | 15.23 ± 0.69 cd | 17.99 ± 1.36 d | 16.74 ± 0.45 cd | 15.16 ± 0.72 cd |
HCT (%) | 44.71 ± 1.27 | 27.13 ± 1.49 a | 34.24 ± 1.11 ab | 40.46 ± 2.08 ab | 7.49 ± 1.68 ab | 34.04 ± 1.32 ab |
MCV (fl) | 53.28 ± 3.01 | 55.35 ± 7.50 | 54.85 ± 2.55 | 54.78 ± 3.81 | 54.74 ± 3.12 | 54.67 ± 3.78 |
MCHC (pg) | 23.68 ± 2.70 | 24.63 ± 2.35 | 24.38 ± 0.88 | 24.34 ± 2.00 | 24.49 ± 2.00 | 24.32 ± 1.37 |
MCHC (g/dL) | 44.38 ± 3.65 | 44.75 ± 2.85 | 44.54 ± 2.89 | 44.54 ± 3.72 | 44.73 ± 2.22 | 44.58 ± 2.35 |
PLT (×10 K/μL) | 151.45 ± 15.57 | 66.19 ± 12.30 c | 85.33 ± 4.14 cd | 111.08 ± 13.66 cd | 99.09 ± 9.94 cd | 85.38 ± 5.45 cd |
Groups | Controls | Reference | Test Materials | |||
---|---|---|---|---|---|---|
Intact | CPA | EAP200 | AR400 | AR200 | AR100 | |
IFN-γ (pg/mL) | 91.84 ± 11.57 | 24.55 ± 10.21 a | 49.08 ± 12.32 ab | 76.16 ± 15.26 b | 61.40 ± 12.12 ab | 48.49 ± 10.46 ab |
TNF-α (pg/mL) | 83.85 ± 13.43 | 15.48 ± 3.01 d | 32.27 ± 12.40 dg | 53.12 ± 12.85 df | 40.57 ± 10.39 df | 32.12 ± 6.34 df |
IL-1β (ng/mL) | 28.01 ± 5.26 | 5.90 ± 1.43 a | 10.31 ± 2.31 ac | 15.20 ± 2.71 ab | 11.75 ± 2.07 ab | 10.29 ± 1.98 ac |
IL-6 (pg/mL) | 37.35 ± 15.28 | 7.24 ± 2.01 d | 13.74 ± 2.75 ef | 21.57 ± 6.11 f | 16.11 ± 2.22 ef | 13.69 ± 2.59 ef |
IL-12 (ng/mL) | 23.43 ± 12.21 | 3.22 ± 1.18 d | 6.37 ± 0.74 ef | 9.65 ± 2.11 f | 7.66 ± 1.02 ef | 6.38 ± 0.57 ef |
Groups | Controls | Reference | Test Materials | |||
---|---|---|---|---|---|---|
Intact | CPA | EAP200 | AR400 | AR200 | AR100 | |
IFN-γ (pg/mL) | 275.76 ± 65.60 | 60.62 ± 12.93 d | 100.81 ± 22.93 df | 166.19 ± 31.37 df | 137.27 ± 30.09 df | 100.78 ± 21.37 df |
TNF-α (pg/mL) | 118.70 ± 18.51 | 38.21 ± 11.83 a | 66.26 ± 11.05 ab | 85.06 ± 12.08 ab | 79.32 ± 13.11 ab | 66.24 ± 10.38 ab |
IL-1β (pg/mL) | 74.39 ± 12.40 | 20.67 ± 3.49 a | 34.65 ± 6.57 ac | 51.48 ± 11.43 ab | 41.84 ± 10.85 ab | 34.54 ± 7.30 ac |
IL-6 (pg/mL) | 86.24 ± 16.60 | 20.74 ± 3.62 d | 38.10 ± 10.59 df | 51.11 ± 14.81 df | 43.54 ± 10.47 df | 38.54 ± 13.76 dg |
IL-12 (pg/mL) | 519.07 ± 168.94 | 164.09 ± 51.70 d | 277.51 ± 55.11 ef | 364.05 ± 71.64 f | 323.64 ± 67.89 f | 277.39 ± 37.30 ef |
Groups | Controls | Reference | Test materials | |||
---|---|---|---|---|---|---|
Intact | CPA | EAP200 | AR400 | AR200 | AR100 | |
NF-κB | 1.00 ± 0.07 | 0.22 ± 0.06 c | 0.42 ± 0.11 cd | 0.69 ± 0.19 cd | 0.56 ± 0.12 cd | 0.42 ± 0.09 cd |
IFN-γ | 1.00 ± 0.08 | 0.22 ± 0.05 a | 0.40 ± 0.07 ab | 0.62 ± 0.13 ab | 0.50 ± 0.12 ab | 0.40 ± 0.09 a |
TNF-α | 1.00 ± 0.08 | 0.20 ± 0.04 c | 0.37 ± 0.08 cd | 0.54 ± 0.12 cd | 0.48 ± 0.17 cd | 0.36 ± 0.09 cd |
IL-1β | 1.00 ± 0.05 | 0.24 ± 0.03 c | 0.43 ± 0.07 cd | 0.66 ± 0.11 cd | 0.57 ± 0.11 cd | 0.43 ± 0.09 cd |
IL-6 | 1.00 ± 0.06 | 0.28 ± 0.06 a | 0.48 ± 0.10 ab | 0.70 ± 0.13 ab | 0.59 ± 0.13 ab | 0.48 ± 0.09 ab |
IL-12 | 1.00 ± 0.09 | 0.22 ± 0.03 c | 0.37 ± 0.07 cd | 0.59 ± 0.14 cd | 0.47 ± 0.08 cd | 0.38 ± 0.07 cd |
Groups | Controls | Reference | Test Materials | |||
---|---|---|---|---|---|---|
Intact | CPA | EAP200 | AR400 | AR200 | AR100 | |
Thymus-thickness | ||||||
Total (mm) | 1.24 ± 0.17 | 0.49 ± 0.06 c | 0.67 ± 0.04 ce | 0.88 ± 0.10 ce | 0.73 ± 0.07 ce | 0.68 ± 0.08 ce |
Cortex (μm) | 807.34 ± 104.45 | 200.92 ± 25.74 c | 294.55 ± 20.28 ce | 377.03 ± 34.92 ce | 320.39 ± 44.09 ce | 291.64 ± 27.81 ce |
Spleen-thickness | ||||||
Total (mm) | 1.76 ± 0.20 | 0.85 ± 0.12 c | 1.23 ± 0.24 ce | 1.52 ± 0.14 e | 1.34 ± 0.15 ce | 1.22 ± 0.09 ce |
WP (μm) | 623.02 ± 75.67 | 238.39 ± 33.13 c | 368.91 ± 43.63 ce | 518.69 ± 92.95 e | 426.16 ± 61.49 ce | 369.84 ± 42.36 ce |
WP (N/mm2) | 20.60 ± 3.06 | 9.40 ± 1.35 d | 13.10 ± 1.10 ce | 15.90 ± 1.37 de | 14.30 ± 1.16 ce | 13.00 ± 1.25 ce |
Immunoreactive cells (numbers/mm2) | ||||||
CD3+ | 335.40 ± 95.99 | 18.50 ± 4.60 c | 166.80 ± 33.96 ce | 269.50 ± 74.22 e | 214.80 ± 65.97 e | 157.20 ± 44.90 ce |
CD4+ | 146.00 ± 16.19 | 12.00 ± 5.33 a | 47.60 ± 15.31 ab | 128.60 ± 19.93 b | 75.00 ± 19.49 ab | 47.00 ± 12.08 ab |
CD8+ | 186.80 ± 36.84 | 12.60 ± 4.72 c | 69.40 ± 18.16 ce | 121.80 ± 24.97 ce | 98.80 ± 16.31 ce | 64.80 ± 17.18 ce |
TNF-α+ | 288.20 ± 74.89 | 8.80 ± 6.12 c | 82.00 ± 28.13 ce | 231.80 ± 22.30 e | 149.20 ± 27.15 ce | 78.60 ± 23.46 ce |
iNOS+ | 193.60 ± 55.78 | 12.10 ± 5.38 c | 73.80 ± 21.11 ce | 150.00 ± 29.38 e | 110.00 ± 21.64 de | 71.60 ± 18.37 ce |
IL-1β+ | 157.80 ± 34.66 | 24.40 ± 12.21 a | 68.40 ± 15.20 ab | 146.80 ± 28.92 b | 88.80 ± 15.06 ab | 68.00 ± 18.31 ab |
LN—thickness | ||||||
Total (mm) | 1.13 ± 0.13 | 0.49 ± 0.09 c | 0.71 ± 0.08 ce | 0.91 ± 0.08 ce | 0.80 ± 0.10 ce | 0.71 ± 0.04 ce |
Cortex (μm) | 764.06 ± 107.63 | 233.05 ± 45.90 a | 406.58 ± 78.67 ab | 646.28 ± 108.56 b | 461.21 ± 129.33 ab | 405.70 ± 59.62 ab |
FO (N/mm2) | 23.00 ± 4.55 | 6.50 ± 1.27 c | 15.00 ± 1.94 ce | 20.90 ± 3.07 e | 17.20 ± 1.69 de | 14.80 ± 2.15 ce |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-R.; Kim, J.W.; Lee, J.-O.; Ahn, J.-D.; Yang, M.-C.; Bashir, K.M.I.; Choi, J.-S.; Ku, S.-K. Anti-Mutagenic and Immunomodulatory Effects of Astragali Radix Extract on a Cyclophosphamide-Induced Immunosuppressed Mouse Model. Appl. Sci. 2023, 13, 2959. https://doi.org/10.3390/app13052959
Park H-R, Kim JW, Lee J-O, Ahn J-D, Yang M-C, Bashir KMI, Choi J-S, Ku S-K. Anti-Mutagenic and Immunomodulatory Effects of Astragali Radix Extract on a Cyclophosphamide-Induced Immunosuppressed Mouse Model. Applied Sciences. 2023; 13(5):2959. https://doi.org/10.3390/app13052959
Chicago/Turabian StylePark, Hye-Rim, Joo Wan Kim, Jung-Ok Lee, Jong-Deuk Ahn, Min-Cheol Yang, Khawaja Muhammad Imran Bashir, Jae-Suk Choi, and Sae-Kwang Ku. 2023. "Anti-Mutagenic and Immunomodulatory Effects of Astragali Radix Extract on a Cyclophosphamide-Induced Immunosuppressed Mouse Model" Applied Sciences 13, no. 5: 2959. https://doi.org/10.3390/app13052959
APA StylePark, H. -R., Kim, J. W., Lee, J. -O., Ahn, J. -D., Yang, M. -C., Bashir, K. M. I., Choi, J. -S., & Ku, S. -K. (2023). Anti-Mutagenic and Immunomodulatory Effects of Astragali Radix Extract on a Cyclophosphamide-Induced Immunosuppressed Mouse Model. Applied Sciences, 13(5), 2959. https://doi.org/10.3390/app13052959