Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying
Abstract
:1. Introduction
2. Methodology
2.1. Multi-Layer Perceptron Technique
2.2. Radial Basic Function Technique
2.3. Deep Neural Networks Technique
2.4. Convolutional Neural Networks Technique
2.5. Random Forest, k-NN, SVM, SVR Technique
- capacity (C), which presents a compromise between model complexity and size, to which deviations bigger than (C) are tolerated;
- epsilon (ε), which controls insensitive space, and ε is used to adjust training data;
- gamma (γ), which is the parameter of the kernel function.
3. Results and Discussion
3.1. Multi-Layer Perceptron vs. Convective Drying
No. | Application | Descriptors | Air Temp [°C] | Air Velocities [m·s−1] | Fruit and Vegetable | * Structure | R2 | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | various temperatures evolution (classification of texture parameters) | GLCM texture feature | 60, 70, 80, 90 | 1.0 | sweet potato | 6-11-4 | 0.55 | 2022 | [60] |
2. | moisture ratio | drying time, initial volume, area difference, moisture content, final thickness | 50–60 | 0.5 | orange Valencia | 5-3-1 | 0.9811 | 2022 | [64] |
3. | drying rate | effective moisture diffusivity, moisture content, final volume | 50–60 | 0.5 | orange Valencia | 3-2-1 | 0.8618 | 2022 | [64] |
4. | predict the moisture concentration changes during drying of apple | air temperature, airflow velocity, drying time | 45, 50, 55, 60 | 0.75, 1.0, 1.25 | apples | 3–10–10–1 | 0.99 | 2020 | [65] |
5. | moisture content evolution (predictions) | temperature, flow velocity, time | 40, 50, 60 | 1.0, 2.0, 3.0 | quinces | 3-90-90-1 | 0.99 | 2020 | [68] |
6. | classification (ripe and over-ripe fruits) | frequency (Hz) and the level of luminosity (dB) | 60 | 1 | strawberry | 2-14-1 | 0.980 | 2020 | [71] |
7. | prediction of color parameters, vitamin C concentrations and β-carotene concentrations | type of root vegetables and drying method | 50, 70 | - | celery, carrot, fennel, purple carrot, parsley, yellow carrot | 2-8-6 | 0.887 | 2020 | [73] |
8. | physical and chemical characteristics of the root, vegetable extracts prepared after different drying methods | type of root vegetables, drying method and the type of prepared extract | 50, 70 | - | celery, carrot, fennel, purple carrot, parsley, yellow carrot | 3-10-4 | 0.878 | 2020 | [73] |
9. | optimization color difference (CD), volume ratio (VR) and water absorption capacity (WAC) | drying temperature, drying air velocity, | 50–70 | 0.01–6 | apple | 2-5-3-3 | 0.98 | 2018 | [66] |
10. | prediction (moisture ratio) | drying temperature, drying time | 50, 60, 70 | - | kiwi slice | 2-13-13-1 | 0.997 | 2017 | [74] |
11. | prediction | - | 50, 60, 70 | 1.5, 2.0, 2.5 | mulberry | 3-12-3 | 0.9998 | 2017 | [75] |
13. | prediction (moisture ratio) | air temperature, air velocity, thickness, drying time, | 50, 60, 70 | 1.0, 1.5, 2.0 | apple | 4-()-()-5 | 0.92 | 2015 | [67] |
14. | online predictions of moisture kinetics | temperature of heated air velocity of air, size of sample cube, drying time | 50, 60, 70, 80, 90 | 1.5, 2.5, 3.5, 4.5, 5.5 | sweet potato | 4-8-4-1 | 0.9987 | 2010 | [76] |
15. | prediction (kinetics of drying) | the material moisture content in the previous step, process temperature and shape factor | 50, 70, 90, 106 | - | beetroot and potatoes | 3-3-1 | 0.999 | 2010 | [77] |
16. | prediction (estimate the drying behavior) | air temperature, slice thickness, drying time | 60, 80, 100, 120 | - | tomato | 3–17–5-1 | 0.992 | 2008 | [78] |
17. | predictions | power of heater, air velocity and time | 43, 51.5, 56, 72 | 1.0, 1.9 | tomato | 3-4-1 | - | 2007 | [79] |
3.2. Multi-Layer Perceptron vs. Spray Drying
3.3. Other Algorithms in Artificial Intelligence vs. Drying
Application | Descriptors | Air Temp. [°C] | Air Velocities [m·s−1] | Fruit and Vegetable | Type | R2 | Year | Ref. |
---|---|---|---|---|---|---|---|---|
various temperatures evolution (classification of texture parameters) | GLCM texture feature by vegetable image | 60, 70, 80, 90 | 1.0 | sweet potato | MobileNet | 0.778 | 2022 | [60] |
moisture ratio | drying time, initial volume, area difference, moisture content, final thickness | 50–60 | 0.5 | orange Valencia | k-NN | 0.9898 | 2022 | [64] |
moisture ratio | drying time, initial volume, area difference, moisture content, final thickness | 50–60 | 0.5 | orange Valencia | Random Forest (RF) | 0.9840 | 2022 | [64] |
moisture ratio | drying time, initial volume, area difference, moisture content, final thickness | 50–60 | 0.5 | orange Valencia | GP | 0.9435 | 2022 | [64] |
moisture ratio | drying time, initial volume, area difference, moisture content, final thickness | 50–60 | 0.5 | orange Valencia | SVR | 0.9803 | 2022 | [64] |
prediction (moisture ratio (MR)) | the weights of the apple slices, drying time, drying temperature, drying air velocity and infrared radiation distance | 50, 60, and 70 | 1.0, 2.0, 3.0 | apples | DNN | 0.998 | 2022 | [115] |
prediction (dry basis moisture content (DBMC)) | the weights of the apple slices, drying time, drying temperature, drying air velocity and infrared radiation distance | 50, 60, and 70 | 1.0, 2.0, 3.0 | apples | DNN | 1.000 | 2022 | [115] |
classification included both the type of drying process and the quality of drying for binary division on account of the applied parameters | the vegetable image | - | - | carrot | MobileNet | 0.998 | 2022 | [116] |
predict the moisture concentration changes during drying | air temperature, airflow velocity and drying time | 45–60 | 0.75–1.25 | apple slices | RBF | 0.98 | 2022 | [65] |
prediction (moisture ratio) | the fruit image and the environment variables, including temperature and air velocity | 25, 35 and 60 | 0.5, 1.0, and 1.5 | date fruits | Random Forest (RF) | 0.976 | 2021 | [108] |
prediction (moisture ratio) | the fruit image and the environment variables, including temperature and air velocity | 25, 35 and 60 | 0.5, 1.0, and 1.5 | date fruits | k-NN | 0.959 | 2021 | [108] |
prediction (moisture ratio) | temperature, thickness and drying time | 50, 60, 70 | 1.10 | persimmon fruit | SVM | 1.000 | 2020 | [54] |
prediction (moisture ratio) | temperature, thickness and drying time | 50, 60, 70 | 1.10 | persimmon fruit | k-NN | 0.9327 | 2020 | [54] |
4. Perspectives of AI Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.; Schönecker, D. Kant and Artificial Intelligence; De Gruyter: Berlin, Germany, 2022; pp. 1–290. [Google Scholar] [CrossRef]
- Bostrom, N. Superintelligence: Paths, Dangers, Strategies; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Patterson, J.; Gibson, A. Deep Learning a Practitioner’s Approach; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Kavdir, I.; Guyer, D.E. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosyst. Eng. 2004, 89, 331–344. [Google Scholar] [CrossRef]
- Przybył, K.; Ryniecki, A.; Niedbała, G.; Mueller, W.; Boniecki, P.; Zaborowicz, M.; Koszela, K.; Kujawa, S.; Kozłowski, R.J. Software supporting definition and extraction of the quality parameters of potatoes by using image analysis. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengu, China, 20–22 May 2016; Falco, C.M., Jiang, X., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 10033, p. 100332L. [Google Scholar]
- Hameed, K.; Chai, D.; Rassau, A. A comprehensive review of fruit and vegetable classification techniques. Image Vis. Comput. 2018, 80, 24–44. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, Y.; Ren, Z. Deep Learning-Based PM2.5 Long Time-Series Prediction by Fusing Multisource Data—A Case Study of Beijing. Atmosphere 2023, 14, 340. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Muhammad Adnan, R. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2199–2212. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Elbeltagi, A.; Yaseen, Z.M.; Shahid, S.; Kisi, O. Development of new machine learning model for streamflow prediction: Case studies in Pakistan. Stoch. Environ. Res. Risk Assess. 2022, 36, 999–1033. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Heddam, S. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Comput. Electron. Agric. 2021, 191, 106541. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.-L.; Ewees, A.A.; Shiri, J.; Kisi, O.; Zounemat-Kermani, M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Rep. 2022, 8, 12063–12080. [Google Scholar] [CrossRef]
- Adnan, R.M.; Kisi, O.; Mostafa, R.R.; Ahmed, A.N.; El-Shafie, A. The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrol. Sci. J. 2022, 67, 161–174. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.-L.; Chargari, M.M.; Al-Bahrani, M.; Mamlooki, M. Prediction of the FRP reinforced concrete beam shear capacity by using ELM-CRFOA. Measurement 2022, 205, 112230. [Google Scholar] [CrossRef]
- Cowan, J.D. Discussion: McCulloch-Pitts and related neural nets from 1943 to 1989. Bull. Math. Biol. 1990, 52, 73–97. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, W.; Li, N.; Li, H. Typical advances of artificial intelligence in civil engineering. Adv. Struct. Eng. 2022, 25, 3405–3424. [Google Scholar] [CrossRef]
- Krohn, J.; Beyleveld, G.; Bassens, A. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence; Addison-Wesley Professional: Boston, MA, USA, 2020. [Google Scholar]
- Sejnowski, T.J.; Cypryański, P. Deep Learning: Głęboka Rewolucja: Kiedy Sztuczna Inteligencja Spotyka Się z Ludzką; Wydawnictwo Poltext: Warszawa, Poland, 2019. [Google Scholar]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Delft, The Netherlands, 2009; Volume 2, pp. 1–127. [Google Scholar] [CrossRef]
- Boden, M.A. Artificial Intelligence: A Very Short Introduction; Oxford University Press: Oxford, UK, 2018; Volume 1. [Google Scholar] [CrossRef]
- Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence—Bookland. Available online: https://bookland.com.pl/deep-learning-illustrated-a-visual-interactive-guide-to-artificial-intelligence (accessed on 19 March 2022).
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef] [Green Version]
- Marwala, T. Multi-layer Perceptron. In Handbook of Machine Learning; World Scientific Publishing Co.: Singapore, 2018. [Google Scholar]
- Przybył, K.; Masewicz, Ł.; Koszela, K.; Duda, A.; Szychta, M.; Gierz, Ł. An MLP artificial neural network for detection of the degree of saccharification of Arabic gum used as a carrier agent of raspberry powders. In Proceedings of the Thirteenth International Conference on Digital Image Processing (ICDIP 2021), Singapore, 20–23 May 2021; Volume 11878, pp. 605–609. [Google Scholar] [CrossRef]
- Tadeusiewicz, R. Neural networks: A comprehensive foundation. Control Eng. Pract. 1995, 3, 746–747. [Google Scholar] [CrossRef]
- Khadse, C.B.; Chaudhari, M.A.; Borghate, V.B. Conjugate gradient back-propagation based artificial neural network for real time power quality assessment. Int. J. Electr. Power Energy Syst. 2016, 82, 197–206. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Liu, Y.; Zhu, Y.Q.; Zhao, X.F. An online self-adaptive RBF network algorithm based on the Levenberg-Marquardt algorithm. Appl. Artif. Intell. 2022, 36, 2146800. [Google Scholar] [CrossRef]
- Gu, L.; Tok, D.K.S.; Yu, D.L. Development of adaptive p-step RBF network model with recursive orthogonal least squares training. Neural Comput. Appl. 2018, 29, 1445–1454. [Google Scholar] [CrossRef]
- Przybył, K.; Wawrzyniak, J.; Koszela, K.; Adamski, F.; Gawrysiak-Witulska, M. Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed. Sensors 2020, 20, 7305. [Google Scholar] [CrossRef]
- Prediction the Inside Variables of Even-Span Glass…: Wyniki Full Text Finder. Available online: https://resolver.ebscohost.com/openurl?sid=EBSCO%3Aedsdoj&genre=article&issn=22286829&ISBN=&volume=10&issue=2&date=20200901&spage=213&pages=213-227&title=Journal+of+Agricultural+Machinery&atitle=Prediction+the+inside+variables+of+even-span+glass+greenhouse+with+special+structure+by+artificial+neural+network+(MLP-RBF)+models&aulast=M+Hamdani&id=DOI%3A10.22067%2Fjam.v10i2.72346&site=ftf-live (accessed on 24 January 2023).
- Jiang, Q.; Zhu, L.; Shu, C.; Sekar, V. An efficient multilayer RBF neural network and its application to regression problems. Neural Comput. Appl. 2022, 34, 4133–4150. [Google Scholar] [CrossRef]
- Liu, C.; Sun, W.; Chao, W.; Che, W. Convolution Neural Network for Relation Extraction. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 8347 LNAI, pp. 231–242. ISBN 9783642539169. [Google Scholar]
- Rattanavorragant, R.; Jewajinda, Y. A hyper-parameter optimization for deep neural network using an island-based genetic algorithm. In Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, 10–13 July 2019; pp. 73–76. [Google Scholar] [CrossRef]
- Sekhon, J.; Fleming, C. Towards improved testing for deep learning. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), Montreal, QC, Canada, 25–31 May 2019; pp. 85–88. [Google Scholar] [CrossRef] [Green Version]
- Physics as a Source of Technology Innovations Which Develop Civilization and Enrich Culture. Available online: https://www.infona.pl/resource/bwmeta1.element.baztech-article-BAT5-0065-0040/tab/linkedResources (accessed on 1 February 2023).
- Kujawa, S.; Mazurkiewicz, J.; Mueller, W.; Gierz, Ł.; Przybył, K.; Wojcieszak, D.; Zaborowicz, M.; Koszela, K.; Boniecki, P. Identification of co-substrate composted with sewage sludge using convolutional neural networks. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 10–13 May 2019; Volume 11179. [Google Scholar]
- Zhang, J. Gradient Descent based Optimization Algorithms for Deep Learning Models Training. arXiv Preprint 2019, arXiv:1903.03614. [Google Scholar]
- Himori, S.; Nishitani, S.; Sakata, T.; Roh, S.-H.; Jung, H.-Y.; Mustapha, A.; Mohamed, L.; Ali, K. Comparative study of optimization techniques in deep learning: Application in the ophthalmology field. J. Phys. Conf. Ser. 2021, 1743, 012002. [Google Scholar] [CrossRef]
- Developer Guides. Available online: https://keras.io/guides/ (accessed on 1 February 2023).
- Islam, M.T.; Karim Siddique, B.M.N.; Rahman, S.; Jabid, T. Food Image Classification with Convolutional Neural Network. In Proceedings of the 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, Thailand, 21–24 October 2018; pp. 257–262. [Google Scholar] [CrossRef]
- Wang, P.; Tseng, H.W.; Chen, T.C.; Hsia, C.H. Deep convolutional neural network for coffee bean inspection. Sens. Mater. 2021, 33, 2299–2310. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 2017, 141, 351–356. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Andrew, J.; Eunice, J.; Popescu, D.E.; Chowdary, M.K.; Hemanth, J. Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy 2022, 12, 2395. [Google Scholar] [CrossRef]
- Shataee, S.; Kalbi, S.; Fallah, A.; Pelz, D. Forest attribute imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms. Int. J. Remote Sens. 2012, 33, 6254–6280. [Google Scholar] [CrossRef]
- Fopa, M.; Gueye, M.; Ndiaye, S.; Naacke, H. A parameter-free KNN for rating prediction. Data Knowl. Eng. 2022, 142, 102095. [Google Scholar] [CrossRef]
- Shi, B.; Han, L.; Yan, H. Adaptive clustering algorithm based on kNN and density. Pattern Recognit. Lett. 2018, 104, 37–44. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, D.; Deng, Z.; Zong, M.; Deng, X. A novel kNN algorithm with data-driven k parameter computation. Pattern Recognit. Lett. 2018, 109, 44–54. [Google Scholar] [CrossRef]
- Lall, U.; Sharma, A. A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series. Water Resour. Res. 1996, 32, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Poggi, B.; Babatounde, C.; Vittori, E.; Antoine-Santoni, T. Efficient WSN Node Placement by Coupling KNN Machine Learning for Signal Estimations and I-HBIA Metaheuristic Algorithm for Node Position Optimization. Sensors 2022, 22, 9927. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.; Saitta, L. Support-Vector Networks Editor. Mach. Leaming 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry. Sustainability 2020, 12, 4776. [Google Scholar] [CrossRef]
- Dutta, M.K.; Sengar, N.; Minhas, N.; Sarkar, B.; Goon, A.; Banerjee, K. Image processing based classification of grapes after pesticide exposure. LWT Food Sci. Technol. 2016, 72, 368–376. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Kabutey, A.; Selvi K, Ç.; Mizera, Č.; Hrabe, P.; Herák, D. Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air Drying Process. Processes 2020, 8, 544. [Google Scholar] [CrossRef]
- Rossi, F.; Villa, N. Classification in Hilbert Spaces with Support Vector Machines. Proc. ASMDA 2005, 635–642. [Google Scholar]
- Xanthopoulos, G.; Mitropoulos, D.; Lambrinos, G. Estimation of heat and mass transfer coefficients during air-freezing of cucumber. Int. J. Food Prop. 2012, 15, 221–235. [Google Scholar] [CrossRef]
- Cortez, P.; Morais, A.d.J.R. A data mining approach to predict forest fires using meteorological data. In Proceedings of the 13th Portuguese Conference on Artificial Intelligence (EPIA 2007), Guimarães, Portugal, 3–7 December 2007. [Google Scholar]
- Ryniecki, A.; Wawrzyniak, J.; Gawalek, J.; Horla, D. Drying Control Design—Case Study on the Near-Ambient Drying of Rapeseed. Przem. Spożywczy 2017, 71, 20–23. [Google Scholar] [CrossRef]
- Bialik, M.; Wiktor, A.; Rybak, K.; Witrowa-Rajchert, D.; Latocha, P.; Gondek, E. The Impact of Vacuum and Convective Drying Parameters on Kinetics, Total Phenolic Content, Carotenoid Content and Antioxidant Capacity of Kiwiberry (Actinidia arguta). Appl. Sci. 2020, 10, 6914. [Google Scholar] [CrossRef]
- Przybył, K.; Adamski, F.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Stangierski, J.; Kmiecik, D. Machine and Deep Learning in the Evaluation of Selected Qualitative Characteristics of Sweet Potatoes Obtained under Different Convective Drying Conditions. Appl. Sci. 2022, 12, 7840. [Google Scholar] [CrossRef]
- Kim, S.Y.; Wi, H.R.; Choi, S.; Ha, T.J.; Lee, B.W.; Lee, M. Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. J. Funct. Foods 2015, 14, 623–633. [Google Scholar] [CrossRef]
- Jiao, Q.; Lin, B.; Mao, Y.; Jiang, H.; Guan, X.; Li, R.; Wang, S. Effects of combined radio frequency heating with oven baking on product quality of sweet potato. Food Control 2022, 139, 109097. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Çetin, N. Prediction of moisture ratio and drying rate of orange slices using machine learning approaches. J. Food Process. Preserv. 2022, 46, e17011. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M. A comparative study on the efficiency of two modeling approaches for predicting moisture content of apple slice during drying. J. Food Process Eng. 2020, 43, e13527. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Martynenko, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-objective optimization of convective drying of apple cubes. Comput. Electron. Agric. 2018, 145, 341–348. [Google Scholar] [CrossRef]
- Nadian, M.H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S.S. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food Bioprod. Process. 2015, 94, 263–274. [Google Scholar] [CrossRef]
- Chasiotis, V.K.; Tzempelikos, D.A.; Filios, A.E.; Moustris, K.P. Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Comput. Electron. Agric. 2020, 172, 105074. [Google Scholar] [CrossRef]
- Zubair, M.; Kashmir, A.; Mahmood Sajid, S.; Waqas, M.; Nawaz, M.; Ahmad, Z. A Review on Quince (Cydonia oblonga): A Useful Medicinal Plant. Glob. Vet. 2015, 14, 517–524. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Jouyban, A. A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). J. Med. Plants Res. 2011, 5, 3577–3594. [Google Scholar] [CrossRef]
- Przybył, K.; Duda, A.; Koszela, K.; Stangierski, J.; Polarczyk, M.; Gierz, Ł. Classification of dried strawberry by the analysis of the acoustic sound with artificial neural networks. Sensors 2020, 20, 499. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yuan, P.; Deng, X. Watermelon ripeness detection by wavelet multiresolution decomposition of acoustic impulse response signals. Postharvest Biol. Technol. 2018, 142, 135–141. [Google Scholar] [CrossRef]
- Marić, L.; Malešić, E.; Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Effects of drying on physical and chemical properties of root vegetables: Artificial neural network modelling. Food Bioprod. Process. 2020, 119, 148–160. [Google Scholar] [CrossRef]
- Mahjoorian, A.; Mokhtarian, M.; Fayyaz, N.; Rahmati, F.; Sayyadi, S.; Ariaii, P. Modeling of drying kiwi slices and its sensory evaluation. Food Sci. Nutr. 2017, 5, 466–473. [Google Scholar] [CrossRef]
- Asghari, M.R.; Ebrahimi, R.; Hosseinzadeh, B.; Ghanbarian, D. Mulberry qualitative pramaters modelling in drying process using artificial neural networks. Iran. J. Biosyst. Eng. 2017, 48, 18–19. [Google Scholar] [CrossRef]
- Azadeh, A.; Neshat, N.; Saberi, M. An intelligent approach for improved predictive control of spray drying process. In Proceedings of the IEEE 14th International Conference on Intelligent Engineering Systems, Las Palmas, Spain, 5–7 May 2010; pp. 127–136. [Google Scholar] [CrossRef]
- Kaminski, W.; Tomczak, E.; Skorupska, E. Estimation of the Effect of Shape and Temperature on Drying Kinetics Using MLP. Dry. Technol. 2010, 22, 191–200. [Google Scholar] [CrossRef]
- Khazaei, J.; Chegini, G.R.; Bakhshiani, M. A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Dry. Technol. 2008, 26, 759–775. [Google Scholar] [CrossRef]
- Movagharnejad, K.; Nikzad, M. Modeling of tomato drying using artificial neural network. Comput. Electron. Agric. 2007, 59, 78–85. [Google Scholar] [CrossRef]
- Suszenie Rozpyłowe w Przemyśle Spożywczym—Postępy Techniki Przetwórstwa Spożywczego—Tom nr 1 (2008)—BazTech—Yadda. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPL6-0014-0012 (accessed on 25 April 2022).
- Ibarz, A.; Barbosa-Cánovas, G.V. Unit Operations in Food Engineering; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9781420012620. [Google Scholar]
- Samborska, K. Powdered honey—drying methods and parameters, types of carriers and drying aids, physicochemical properties and storage stability. Trends Food Sci. Technol. 2019, 88, 133–142. [Google Scholar] [CrossRef]
- Jedlińska, A.; Wiktor, A.; Witrowa-Rajchert, D.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Niemczynowicz, A.; Samborska, K. Quality Assessment of Honey Powders Obtained by High- and Low-Temperature Spray Drying. Appl. Sci. 2020, 11, 224. [Google Scholar] [CrossRef]
- Jedlińska, A.; Samborska, K.; Wieczorek, A.; Wiktor, A.; Ostrowska-Ligęza, E.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; Tułodziecki, M.; et al. The application of dehumidified air in rapeseed and honeydew honey spray drying—Process performance and powders properties considerations. J. Food Eng. 2019, 245, 80–87. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Comput. Electron. Agric. 2018, 155, 314–323. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Przybył, J.; Rudzińska, M.; Gierz, Ł.; Domian, E. Neural image analysis and electron microscopy to detect and describe selected quality factors of fruit and vegetable spray-dried powders—Case study: Chokeberry powder. Sensors 2019, 19, 4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybył, K.; Gawałek, J.; Koszela, K. Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders. J. Food Sci. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, L.; Pawlak, T. Artificial neural networks in the evaluation of the influence of the type and content of carrier on selected quality parameters of spray dried raspberry powders. Measurement 2021, 186, 110014. [Google Scholar] [CrossRef]
- Przybył, K.; Koszela, K.; Adamski, F.; Samborska, K.; Walkowiak, K.; Polarczyk, M. Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors 2021, 21, 5823. [Google Scholar] [CrossRef]
- Samborska, K. Spray-drying of enzymes: Causes of inactivation, methods and mechanisms of stabilizing them. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2010, 6, 7–17. [Google Scholar] [CrossRef]
- Samborska, K. Suszenie rozpyłowe w przemyśle spożywczym. Postępy Tech. Przetwórstwa Spożywczego 2008, nr 1, 63–69. [Google Scholar]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. Process Intensif. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Babu, K.; Amamcharla, J. Application of micro- and nano-bubbles in spray drying of milk protein concentrates. J. Dairy Sci. 2022, 105, 3911–3925. [Google Scholar] [CrossRef]
- Murali, S.; Kar, A.; Mohapatra, D.; Kalia, P. Encapsulation of black carrot juice using spray and freeze drying. Food Sci. Technol. Int. 2015, 21, 604–612. [Google Scholar] [CrossRef]
- Đorđević, V.; Paraskevopoulou, A.; Mantzouridou, F.; Lalou, S.; Pantić, M.; Bugarski, B.; Nedović, V. Encapsulation Technologies for Food Industry. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Springer: Berlin/Heidelberg, Germany, 2016; pp. 329–382. [Google Scholar] [CrossRef]
- Walkowiak, K.; Masewicz, Ł.; Baranowska, H.M. LF nmr studies of microwave modified starch witch lysozyme. Sci. Nat. Technol. Nauk. Przyr. Technol. 2018, 12, 341–351. [Google Scholar]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Smarzyński, K.; Thanh-Blicharz, J.L.; Kačániová, M.; Baranowska, H.M. LF NMR spectroscopy analysis of water dynamics and texture of Gluten-Free bread with cricket powder during storage. Food Sci. Technol. Int. 2021, 27, 776–785. [Google Scholar] [CrossRef]
- Małyszek, Z.; Lewandowicz, J.; Thanh-Blicharz, J.L.; Walkowiak, K.; Kowalczewski, P.Ł.; Baranowska, H.M. Water Behavior of Emulsions Stabilized by Modified Potato Starch. Polymers 2021, 13, 2200. [Google Scholar] [CrossRef]
- Walkowiak, K.; Przybył, K.; Baranowska, H.M.; Koszela, K.; Masewicz, Ł.; Piątek, M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers 2022, 14, 184. [Google Scholar] [CrossRef]
- Kwapińska, M.; Zbiciński, I. Prediction of Final Product Properties After Cocurrent Spray Drying. Dry. Technol. 2006, 23, 1653–1665. [Google Scholar] [CrossRef]
- Youssefi, S.; Emam-Djomeh, Z.; Mousavi, S.M. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in the Prediction of Quality Parameters of Spray-Dried Pomegranate Juice. Dry. Technol. 2009, 27, 910–917. [Google Scholar] [CrossRef]
- Chegini, G.R.; Khazaei, J.; Ghobadian, B.; Goudarzi, A.M. Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. J. Food Eng. 2008, 84, 534–543. [Google Scholar] [CrossRef]
- Chmiel, M.; Słowiński, M.; Dasiewicz, K. Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Sci. 2011, 88, 566–570. [Google Scholar] [CrossRef]
- Muhammad, G.; Al-Hammadi, M.H.; Hussain, M.; Bebis, G. Image forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. 2014, 25, 985–995. [Google Scholar] [CrossRef]
- Golpour, I.; Parian, J.A.; Chayjan, R.A. Identification and classification of bulk paddy, brown, and white rice cultivars with colour features extraction using image analysis and neural network. Czech J. Food Sci. 2014, 32, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xu, M.; Li, Q.; Wang, T.; Zhang, B.; Zhao, H.; Fu, J. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int. J. Biol. Macromol. 2021, 182, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Mai, Y.; Wang, Y.; Yuan, J.; Suo, Y.; Li, H.; Han, W.; Sun, P.; Diao, S.; Fu, J. Metabolome and Transcriptome Analysis Reveal the Accumulation Mechanism of Carotenoids and the Causes of Color Differences in Persimmon (Diospyros kaki Thunb.) Fruits. Agronomy 2022, 12, 2688. [Google Scholar] [CrossRef]
- Keramat-Jahromi, M.; Mohtasebi, S.S.; Mousazadeh, H.; Ghasemi-Varnamkhasti, M.; Rahimi-Movassagh, M. Real-time moisture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods. Measurement 2021, 172, 108899. [Google Scholar] [CrossRef]
- Abdul, E.; Assirey, R. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2018, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Taha, K.K.; Al Ghtani, F.M. Determination of the elemental contents of date palm (Phoenix dactylifera L.) from Kharj Saudi Arabia. WSN 2015, 12, 66–76. [Google Scholar]
- Kuras, M.J.; Zielin’ska, M.; Zielin´ska-Pisklak, Z.; Duszyn´ska, J.; Duszyn´ska, D.; Jabłon´ska, J.; Jabłon´ska, J. Determination of the elemental composition and antioxidant properties of dates (Phoenix dactyliferia) originated from different regions. J. Food Sci. Technol 2020, 57, 2828–2839. [Google Scholar] [CrossRef] [Green Version]
- Koca Bozalan, N.; Karadeniz, F. Carotenoid profile, total phenolic content, and antioxidant activity of carrots. Int. J. Food Prop. 2011, 14, 1060–1068. [Google Scholar] [CrossRef]
- Imsic, M.; Winkler, S.; Tomkins, B.; Jones, R. Effect of Storage and Cooking on β-Carotene Isomers in Carrots (Daucus carota L. cv. ‘Stefano’). J. Agric. Food Chem. 2010, 58, 5109–5113. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint 2017, arXiv:1704.04861. [Google Scholar]
- Huang, X.; Li, Y.; Zhou, X.; Wang, J.; Zhang, Q.; Yang, X.; Zhu, L.; Huang, X.; Li, Y.; Zhou, X.; et al. Prediction of Apple Slices Drying Kinetic during Infrared-Assisted-Hot Air Drying by Deep Neural Networks. Foods 2022, 11, 3486. [Google Scholar] [CrossRef]
- Koszela, K.; Adamski, F.; Szychta, M.; Przybył, K.; Gierz, Ł. Quality evaluation of dried carrot obtained in different drying conditions using deep convolutional neural networks. In Proceedings of the Fourteenth International Conference on Digital Image Processing (ICDIP 2022), Wuhan, China, 20–23 May 2022; Volume 12342, pp. 879–885. [Google Scholar] [CrossRef]
Application | Descriptors | Inlet Air Temp. [°C] | Carrier | Fruit and Vegetable | * Structure | R2 | Year | Ref. |
---|---|---|---|---|---|---|---|---|
classification | Circularity (Circ.), Solidity, Round, Feret factor, AW (water activity), MC (moisture content), W1, W2 | 80 | maltodextrin, gum arabic, inulin | raspberry | 8-44-9 | 0.999 | 2021 | [88] |
classification based on color features | RGB, YCbCr, HSV and HSL | - | Maltodextrin used during the research has dextrose equivalent (DE), respectively: ‘‘H’’—DE 26 and ‘‘L’’—DE 12 | rhubarb | 46-11-10 | 0.91 | 2020 | [87] |
classification | YCbCr | 150, 160, 170 | maltodextrin | chokeberry | 15-25-3 | 0.994 | 2019 | [86] |
classification | RGB | 150, 160, 170 | maltodextrin | chokeberry | 15-10-2 | 0.999 | 2019 | [86] |
classification | GLCM feature | 165–170 | maltodextrin | strawberry | 12-1-4 | 0.944 | 2018 | [85] |
classification | shape factors | 165–170 | maltodextrin | strawberry | 9-9-4 | 0.944 | 2018 | [85] |
classification | color coefficients | 165–170 | maltodextrin | strawberry | 30-19-4 | 0.998 | 2018 | [85] |
prediction | Yield (%) Solubility (%), Antioxidant activity (%), Total anthocyanin content (mg = L), Color (DE) | 130 | maltodextrin, arabic gum, waxy starch | pomegranate | 3-10-8-5 | 0.87 | 2009 | [101] |
predict | feed flow rate, atomizer speed, inlet air-temperature | 110, 130, 150, 170, 190 | maltodextrin, liquid glucose, and methylcellulose | orange | 3-14-10-7 | 0.966 | 2008 | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybył, K.; Koszela, K. Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying. Appl. Sci. 2023, 13, 2965. https://doi.org/10.3390/app13052965
Przybył K, Koszela K. Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying. Applied Sciences. 2023; 13(5):2965. https://doi.org/10.3390/app13052965
Chicago/Turabian StylePrzybył, Krzysztof, and Krzysztof Koszela. 2023. "Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying" Applied Sciences 13, no. 5: 2965. https://doi.org/10.3390/app13052965
APA StylePrzybył, K., & Koszela, K. (2023). Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying. Applied Sciences, 13(5), 2965. https://doi.org/10.3390/app13052965