The Fading Memory Formalism with Mittag-Leffler-Type Kernels as A Generator of Non-Local Operators
Abstract
:1. Introduction
1.1. Motivation of This Study
1.2. Heat Conduction as a Transport Process with Memory
1.2.1. Constitutive Fractional Heat Flux with Caputo Derivative [15]
1.2.2. Constitutive Heat Flux with Linear Memory [22]
1.3. The Main Task of This Article
1.4. Paper Organization in the Sequel
2. Preliminaries on Mittag-Leffler Functions, Their Properties and Available Fractional Operators
2.1. Mittag-Leffler Functions and Related Kernels
2.1.1. One-Parameters Mittag-Leffler Function
2.1.2. Two-Parameters Mittag-Leffler Function
2.1.3. Three-Parameter Mittag-Leffler Function
2.1.4. Prabhakar Kernel
2.2. Fractional Operators with Mittag-Leffler-Type Kernels: Definitions and Interrelationships
2.2.1. Prabhakar Integral
2.2.2. Prabhakar Derivatives
2.2.3. Caputo Derivative
2.2.4. Atangana–Baleanu Derivative
2.2.5. Caputo–Fabrizio Derivative
2.3. The Fractional Order in Caputo–Fabrizio and Atangana–Baleanu Derivatives
Caputo–Fabrizio Fractional Operator: The Fractional Parameter
3. Fading Memory Approach (Formalism) and Concept of Model Development
3.1. Fading Memory Concept
3.2. Model Build-Up Concept
4. Heat Conduction Models with Mittag-Leffler-Type Memories: Examples
4.1. Heat Conduction with Infinite Flux Speed (Local in Time)
4.2. Heat Flux with Exponential Memory Kernel
4.3. Heat Flux with Mittag-Leffler (One-Parameter) Memory Kernel
4.4. Heat Flux with Prabhakar Memory Kernel
5. Experiments with Other Known Kernels
5.1. Rzanitsyn Kernel
5.2. Miller–Ross Kernel
5.3. Rabotnov Kernel
6. Heat Conduction Model Analysis
6.1. A Trivial Example That Is Correct but Might Be Misleading
6.2. Heat Conduction and Diffusion Models with Mittag-Leffler Kernels: An Analysis
Garra–Garrappa’s Non-Linear Heat Conduction Model
7. Fading Memory Approach or Volterra Equations?
8. Final Comments and Outcomes
- What the main achievements are?
- How the systematic approach applying the fading memory formalism allows constructions of physically adequate fractional models?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giusti, A. A comment on some new definitions of fractional derivative. Nonlinear Dyn. 2018, 93, 1757–1763. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M. Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 2018, 85, 22–26. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.A.T. A critical analysis of the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 608–611. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematic 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Machado, J.A.T.; Tarasov, V.A. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Baleanu, R.P.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. Some applications to partial differential equations. Prog. Fract. Differ. Appl. 2021, 7, 1–4. [Google Scholar]
- Hilfer, R. Mathematical and physical interpretations of fractional derivatives and integrals. In Handbook of Fractional Calculus with Applications; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; Volume 1, pp. 47–85. [Google Scholar]
- Tateishi, A.A.; Ribeiro, H.V.; Sandev, T.; Petreska, I.; Lenzi, E.K. Quenched and annealed disorder mechanisms in comb models with fractional operators. Phys. Rev. E 2020, 101, 022135. [Google Scholar] [CrossRef] [Green Version]
- Amendola, G.; Fabrizio, M.; Golden, M. Thermodynamics of Materials with Memory; Springer: New York, NY, USA, 1964. [Google Scholar]
- Carillo, S. Some remarks on materials with memory: Heat conduction and viscoelasticity. J. Nonlinear Math. Phys. 2005, 12, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Fabrizio, M.; Gentili, G.; Reynolds, D.W. On rigid heat conductors with memory. Ind. J. Eng. Sci. 1998, 36, 765–782. [Google Scholar] [CrossRef]
- Fabrizio, M. Fractional rheological models for thermomechanical systems. Dissipation and free energies. Frac. Calc. Appl. Anal. 2014, 17, 206–223. [Google Scholar] [CrossRef]
- Boltzmann, L. Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Akad. Wiss. Wien. Mathem.-Naturwiss 1874, 70, 275–300. [Google Scholar]
- Volterra, V. Lecons sur la Theorie Mathematique de la Lutte Pour la Vie; Gauthier-Villars: Paris, France, 1931. [Google Scholar]
- Coleman, B.D.; Mizels, V.J. Thermodynamics and departure from Fourier’s law of heat conduction. Arch. Ration. Mech. Anal. 1963, 13, 245–261. [Google Scholar] [CrossRef]
- Gurtin, M.E. On the thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 1968, 28, 40–50. [Google Scholar] [CrossRef]
- Nunziato, J.W. On heat conduction in materials with memory. Quart. J. Appl. Math. 1971, 29, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Day, W.A. The Thermodynamics of Simple Materials with Fading Memory; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Giorgi, C.; Gentili, G. Thermodynamic properties and stability for heat flux equation with linear memory. Quart. J. Appl. Math. 1993, 51, 343–362. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, C. On the conduction of heat. Atti Sem. Mat. Fis. Univ. Modena 1948, 3, 83–101. (In Italian) [Google Scholar]
- Cattaneo, C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comp. Rend. Hebd. Séances Acad. Sci. Paris 1958, 247, 431–433. (In French) [Google Scholar]
- Vernotte, P. Paradoxes in the continuous theory of the heat equation. Comp. Rend. Hebd. Séances Acad. Sci. Paris 1958, 246, 3154–3155. (In French) [Google Scholar]
- Mittelstaedt, P.; Weingartner, P.A. Laws of Nature; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Nussenzveig, H. Causality and Dispersion Relations; Academic Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Lighthill, M.J. An Introduction to Fourier Analysis and Generalized Functions; Cambridge University Press: London, UK; New York, NY, USA, 1959. [Google Scholar]
- Fabrizio, M.; Giorgi, C.; Morro, A. Modeling of heat conduction via fractional derivatives. Heat Mass Transfer 2017, 53, 2785–2797. [Google Scholar] [CrossRef]
- Mainardi, F. Why the Mittag-Leffler function can be considered the queen of the fractional calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA; Boston, MA, USA; New York, NY, USA; London, UK; Tokyo, Japan; Toronto, ON, Canada, 1999. [Google Scholar]
- Polard, H. The completely monotonic character of the Mittag-Leffler function. Bull. Am. Math. Soc. 1948, 52, 908–910. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Miller, K.S.; Samko, S.G. A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exch. 1997, 23, 753–755. [Google Scholar] [CrossRef]
- Miller, K.S.; Samko, S.G. Completely monotonic functions. Integral Transform. Spec. Funct. 2001, 12, 389–402. [Google Scholar] [CrossRef]
- Schneider, W.R. Completely monotone generalized Mittag-Leffler functions. Expo. Math. Soc. 1996, 14, 3–16. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Trasform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A.; Lattanzi, A.; Pogány, T.K. On complete monotonicity of three parameter Mittag-Leffler function. Appl. Anal. Discret. Math. 2021, 5, 118–128. [Google Scholar] [CrossRef]
- Mainardi, F.; Garrappa, R. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comp. Phys. 2015, 293, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Frac. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Tomovski, Z.; Pogany, T.K.; Srivastava, H.M. Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. J. Frankl. Inst. 2014, 351, 5437–5454. [Google Scholar] [CrossRef]
- Garra, R.; Garrappa, R. The Prabhakar of three parameter Mittag-Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simulat. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Garra, R.; Gorenglo, R.; Polito, F.; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Tomovski, Z. Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. Calc. 2016, 6, 73–94. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comp. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A. General fractional calculus and Prabhakar’ theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 1055114. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Elasticita e Dissipazione, 1st ed.; Zanichelli Bologna: Bologna, Italy, 1969. [Google Scholar]
- Area, I.; Nieto, J.J. Fractional-order logistic differential equation with Mittag-Leffler-type kernel. Fractal Fract. 2021, 5, 273. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications to a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with generalized Mittag-Leffler kernels. Adv. Differ. Equ. 2018, 2018, 468. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos 2019, 29, 023102. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representation f0r fractional-calculus operators involving generalized Mittag-Leffler functions. Commun. Nonlinear Sci. Appl. Num. Simul. 2019, 67, 157–527. [Google Scholar]
- Fernandez, A.; Abdeljawad, T.; Baleanu, D. Relations between fractional models with three-parameter Mittag-Leffler kernels. Adv. Differ. Equ. 2020, 2020, 186. [Google Scholar] [CrossRef]
- Garrappa, R.; Maione, G. Fractional Prabhakar derivative and applications in anomalous dielectrics: A numerical approach. In Theory and Applications of Non-Integer Order Systems, Lecture Notes in Electrical Engineering 407; Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 429–439. [Google Scholar]
- Capelas de Oliveira, E.; Mainardi, F.; Vaz, J., Jr. Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 2014, 49, 2049–2060. [Google Scholar] [CrossRef]
- Skovaranek, T. The Mittag-Leffler fitting of the Phillips curve. Mathematics 2019, 7, 589. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Derivatives with non-singular kernels: From the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. In Frontiers in Fractional Calculus; Bhalekar, S., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; pp. 269–342. [Google Scholar]
- Hristov, J. Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels: Pragmatic approach, Memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 2019, 134, 283. [Google Scholar] [CrossRef]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 305. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 2016, 20, 765–770. [Google Scholar] [CrossRef]
- Coleman, B.; Gurtin, M.E. Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 1967, 18, 188–208. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Miller, R.K. An integrodifferential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 1978, 20, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Fractional Time evolution, In Applications of Fractional Calculus in Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; pp. 89–116. [Google Scholar]
- Coleman, B. Thermodynamics of Materials with Memory; Springer: Wien, Austria, 1971. [Google Scholar]
- Fabrizio, M.; Morro, A. Thermodynamic restrictions on relaxation functions in linear viscoelasticity. Mech. Res. Commun. 1985, 12, 101–105. [Google Scholar] [CrossRef]
- Morro, A. A thermodynamic approach to rate equations in continuum physics. J. Phys. Sci. Appl. 2017, 7, 15–23. [Google Scholar]
- Morro, A. Thermodynamic consistency of objective rate equations. Mech. Res. Commun. 2017, 84, 72–76. [Google Scholar] [CrossRef]
- Morro, A.; Giorgi, C. Objective rate equations and memory properties in continuum physics. Math. Comp. Sim. 2020, 176, 243–253. [Google Scholar] [CrossRef]
- Bouchaud, J.-P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Ladman, U.; Montroll, E.W.; Shlesinger, M.F. Random walks and generalized master equations with integral degrees of freedom. Proc. Natl. Acad. Sci. USA 1977, 74, 430–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanislavsky, A.; Weron, A. Transient diffusion with Prabhakar-type memory. J. Chem. Phys. 2018, 149, 044107. [Google Scholar] [CrossRef] [PubMed]
- Stanislavsky, A.; Weron, A. Control of the transient subdiffusion exponent at a short and long times. Phys. Rev. Res. 2019, 1, 023006. [Google Scholar] [CrossRef] [Green Version]
- Gajda, J.; Beghin, L. Prabhakar Levy processes. Stat. Probab. Lett. 2021, 178, 109162. [Google Scholar] [CrossRef]
- Storm, M.L. Heat conduction in simple metals. J. Appl. Phys. 1951, 22, 940–951. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preciozi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41–73. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Logistic equation with continuously distributed lag and applications in economics. Nonlinear Dyn. 2019, 97, 1313–1328. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers, vol. 1. Background and Theory; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2013; pp. 62–63. [Google Scholar]
- Hristov, J. Transient heat conduction with non-singular memory: Heat flux equation with a Mittag-Leffler memory naturally leads to ABC derivative. Therm. Sci. 2023; 27, in press. [Google Scholar] [CrossRef]
- Rzanitsyn, A.R. Some Questions in Mechanics of Systems Deformed with Time; Gostekhiizadat: Moscow, Russia, 1949. (In Russian) [Google Scholar]
- Selivanov, M.F. Effective properties of a linear viscoelastic composites. Int. J. Appl. Mech 2009, 45, 1084–1091. [Google Scholar] [CrossRef]
- Shitikova, M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A review. Mech. Solids 2022, 57, 1–33. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind. Frac. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J. General Fractional Derivatives: Theory, Methods and Applications; CRC Press: New York, NY, USA, 2019. [Google Scholar]
- Feng, Y.-Y.; Yang, X.-Y.; Liou, J.-G.; Chen, Z.-Q. Rheological analysis of the general fractional-order viscoelastic model involving the Miller-Ross kernel. Acta Mech. 2021, 232, 3141–3148. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Liu, J.-G. Anomalous diffusion equation using a new general fractional derivative within the Miller-Ross kernel. Mod. Phys. Lett. B 2020, 34, 2050289. [Google Scholar] [CrossRef]
- Rabotnov, Y.N. Creep Problems in Structural Members; North-Holland: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Yang, X.-J.; Abdel-Aty, M.; Cattani, C. A new general fractional-order derivative with Rabotnov fractional exponential kernel applied to the anomalous heat transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J.; Ragulskis, M.; Taha, T. A new general fractional-order derivative with Rabotnov fractional exponential kernel. Therm. Sci. 2019, 23, 3711–3718. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, S.; Samet, B.; Goufo, E.F.D. An analysis of heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Model. Appl. Sci. 2020, 43, 6062–6080. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, S.; Lotayif, M.S.M.; Samet, B. A model describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator. Alex. Eng. J. 2020, 59, 1435–1449. [Google Scholar] [CrossRef]
- Sene, N. Fractional diffusion equation with new fractional operator. Alex. Eng. J. 2020, 59, 2921–2926. [Google Scholar] [CrossRef]
- Garrappa, R.; Mainardi, F.; Maione, G. Models of dielectric relaxation based on completely monotone functions. Frac. Calc. Appl. Anal. 2016, 19, 1105–1160. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: A semi-infinite medium with fixed boundary conditions. Heat Mass Transf. 2016, 52, 635–655. [Google Scholar] [CrossRef]
- Dos Santos, A.F. Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T. Generalized Langevin equation and the Prabhakar derivative. Mathematics 2017, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T.; Deng, W.; Xu, P. Models for characterizing the transition among anomalous diffusions with different diffusion exponents. J. Phys. A Math. Theor. 2018, 51, 405002. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristov, J. The Fading Memory Formalism with Mittag-Leffler-Type Kernels as A Generator of Non-Local Operators. Appl. Sci. 2023, 13, 3065. https://doi.org/10.3390/app13053065
Hristov J. The Fading Memory Formalism with Mittag-Leffler-Type Kernels as A Generator of Non-Local Operators. Applied Sciences. 2023; 13(5):3065. https://doi.org/10.3390/app13053065
Chicago/Turabian StyleHristov, Jordan. 2023. "The Fading Memory Formalism with Mittag-Leffler-Type Kernels as A Generator of Non-Local Operators" Applied Sciences 13, no. 5: 3065. https://doi.org/10.3390/app13053065
APA StyleHristov, J. (2023). The Fading Memory Formalism with Mittag-Leffler-Type Kernels as A Generator of Non-Local Operators. Applied Sciences, 13(5), 3065. https://doi.org/10.3390/app13053065