Deep Contrastive Learning-Based Model for ECG Biometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Dataset Description
2.1.2. Data Preprocessing
2.2. Proposed Method
2.2.1. Features Extraction Backbone
2.2.2. Contrastive Learning for Effective Leveraging of Cluster Distinction
- Pair generation: For each feature sample, we randomly generate a set of positive samples from the same class, and a set negative samples from the other classes.
- Encoder network Enc(·): This network receives the generated pairs separately and maps them to a couple of representation vectors normalized to the unit hypersphere in .
- Projection network: Used only in the contrastive training phase and discarded after, this multi-layer perceptron block maps the vector to representation vector. With the aim of measuring distances using inner product in the projection space, the output of the projection network is normalized to a unit hypersphere in.
3. Results and Discussions
3.1. Experimental Setup and Performance Evaluation
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odinaka, I.; Lai, P.-H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Rohrbaugh, J.W. ECG Biometric Recognition: A Comparative Analysis. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1812–1824. [Google Scholar] [CrossRef]
- Jomaa, R.M.; Mathkour, H.; Bazi, Y.; Islam, M.S. End-to-End Deep Learning Fusion of Fingerprint and Electrocardiogram Signals for Presentation Attack Detection. Sensors 2020, 20, 2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.-H.; Pyun, J.-Y. ECG Identification for Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks. Sensors 2020, 20, 3069. [Google Scholar] [CrossRef] [PubMed]
- Ibtehaz, N.; Chowdhury, M.E.H.; Khandakar, A.; Kiranyaz, S.; Rahman, M.S.; Tahir, A.; Qiblawey, Y.; Rahman, T. EDITH: ECG Biometrics Aided by Deep Learning for Reliable Individual AuTHentication. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 928–940. [Google Scholar] [CrossRef]
- Komeili, M.; Armanfard, N.; Hatzinakos, D. Liveness Detection and Automatic Template Updating Using Fusion of ECG and Fingerprint. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1810–1822. [Google Scholar] [CrossRef]
- Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG Analysis: A New Approach in Human Identification. IEEE Trans. Instrum. Meas. 2001, 50, 808–812. [Google Scholar] [CrossRef] [Green Version]
- Uwaechia, A.N.; Ramli, D.A. A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges. IEEE Access 2021, 9, 97760–97802. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review. Comput. Biol. Med. 2020, 122, 103801. [Google Scholar] [CrossRef]
- Hassan, Z.; Jamil, S.O.G. and M. Review of Fiducial and Non-Fiducial Techniques of Feature Extraction in ECG Based Biometric Systems. Indian J. Sci. Technol. 2016, 9, 850–855. [Google Scholar] [CrossRef]
- Belo, D.; Bento, N.; Silva, H.; Fred, A.; Gamboa, H. ECG Biometrics Using Deep Learning and Relative Score Threshold Classification. Sensors 2020, 20, 4078. [Google Scholar] [CrossRef]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H. Enhancing the Information Content of Fingerprint Biometrics with Heartbeat Signal. In Proceedings of the 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet, Tunisia, 19–21 September 2015; pp. 1–5. [Google Scholar]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H.; Al-Ahmadi, S. A Multilayer System to Boost the Robustness of Fingerprint Authentication against Presentation Attacks by Fusion with Heart-Signal. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5132–5143. [Google Scholar] [CrossRef]
- Regouid, M.; Touahria, M.; Benouis, M.; Costen, N. Multimodal Biometric System for ECG, Ear and Iris Recognition Based on Local Descriptors. Multimed. Tools Appl. 2019, 78, 22509–22535. [Google Scholar] [CrossRef]
- Israel, S.A.; Scruggs, W.T.; Worek, W.J.; Irvine, J.M. Fusing Face and ECG for Personal Identification. In Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2003; pp. 226–231. [Google Scholar]
- Bugdol, M.D.; Mitas, A.W. Multimodal Biometric System Combining ECG and Sound Signals. Pattern Recognit. Lett. 2014, 38, 107–112. [Google Scholar] [CrossRef]
- Donida Labati, R.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Networks for ECG Biometric Recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Chu, Y.; Shen, H.; Huang, K. ECG Authentication Method Based on Parallel Multi-Scale One-Dimensional Residual Network with Center and Margin Loss. IEEE Access 2019, 7, 51598–51607. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Ihsanto, E.; Ramli, K.; Sudiana, D.; Gunawan, T.S. Fast and Accurate Algorithm for ECG Authentication Using Residual Depthwise Separable Convolutional Neural Networks. Appl. Sci. 2020, 10, 3304. [Google Scholar] [CrossRef]
- Salloum, R.; Kuo, C.-C.J. ECG-Based Biometrics Using Recurrent Neural Networks. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2062–2066. [Google Scholar]
- Jyotishi, D.; Dandapat, S. An LSTM-Based Model for Person Identification Using ECG Signal. IEEE Sens. Lett. 2020, 4, 8. [Google Scholar] [CrossRef]
- Lynn, H.M.; Pan, S.B.; Kim, P. A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks. IEEE Access 2019, 7, 145395–145405. [Google Scholar] [CrossRef]
- Hamilton, P.S.; Tompkins, W.J. Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Trans. Biomed. Eng. 1986, BME-33, 1157–1165. [Google Scholar] [CrossRef]
- Hamilton, P. Open Source ECG Analysis. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002; pp. 101–104. [Google Scholar]
- Tirado-Martin, P.; Sanchez-Reillo, R. BioECG: Improving ECG Biometrics with Deep Learning and Enhanced Datasets. Appl. Sci. 2021, 11, 5880. [Google Scholar] [CrossRef]
- Ivanciu, L.; Ivanciu, I.-A.; Farago, P.; Roman, M.; Hintea, S. An ECG-Based Authentication System Using Siamese Neural Networks. J. Med. Biol. Eng. 2021, 41, 558–570. [Google Scholar] [CrossRef]
- Pinto, J.R.; Cardoso, J.S.; Lourenço, A. Evolution, Current Challenges, and Future Possibilities in ECG Biometrics. IEEE Access 2018, 6, 34746–34776. [Google Scholar] [CrossRef]
- Islam, M.S.; Alhichri, H.; Bazi, Y.; Ammour, N.; Alajlan, N.; Jomaa, R.M. Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition. Data 2022, 7, 141. [Google Scholar] [CrossRef]
- Islam, M.S.; Alajlan, N. An Efficient QRS Detection Method for ECG Signal Captured from Fingers. In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July 2013; pp. 1–5. [Google Scholar]
- Islam, M.S.; Alajlan, N. Augmented-Hilbert Transform for Detecting Peaks of a Finger-ECG Signal. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 864–867. [Google Scholar]
- AlDuwaile, D.A.; Islam, M.S. Using Convolutional Neural Network and a Single Heartbeat for ECG Biometric Recognition. Entropy 2021, 23, 733. [Google Scholar] [CrossRef] [PubMed]
- Alduwaile, D.; Islam, M.S. Single Heartbeat ECG Biometric Recognition Using Convolutional Neural Network. In Proceedings of the 2020 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 23–24 December 2020; pp. 145–150. [Google Scholar]
- Al Rahhal, M.M.; Bazi, Y.; Almubarak, H.; Alajlan, N.; Al Zuair, M. Dense Convolutional Networks with Focal Loss and Image Generation for Electrocardiogram Classification. IEEE Access 2019, 7, 182225–182237. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of Machine Learning Research, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; JMLR: Cambridge, MA, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations 2020. Int. Conf. Mach. Learn. 2020, 119, 1597–1607. [Google Scholar]
- Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality Reduction by Learning an Invariant Mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1735–1742. [Google Scholar]
Study (Year) | Method | Dataset | Performance |
---|---|---|---|
Ibtehaz et al. [4] (2021) | Deep learning MultiResUNet | ECG-ID MIT-BIH Arrhythmia PTB Diagnostic ECG Database MIT-BIH NSRDB | Acc. 96–99.75% with single beat Acc. 100% with 3–6 beats |
Ivanciu et al. [26] (2021) | Siamese NN | ECG-ID | Acc. 86.47% |
Ihsanto et al. [19] (2020) | Residual Depthwise Separable CNN (RDSCNN) | ECG-ID MIT-BIH | ECG-ID: Acc. 98.89% MIT-BIH: 97.92% |
Tirado-Martin et al. [25] (2021) | CNN and LSTM | Private dataset | EER = 0–5.31 EER = 0–1.35 |
Labati et al. [16] (2019) | CNN | PTB Diagnostic ECG Database | Identification Acc. 100% |
Date | # Subjects | # ECG Records per Subject (Minimum-Maximum) | Total | |
---|---|---|---|---|
Session 1 | Jan-2012 | 199 | 2–6 | 476 |
Session 2 | June-2012 | 199 | 2–5 | 464 |
Session-3R | Mar-2022 | 109 | 3–6 | 365 |
Session-3L | Mar-2022 | 78 | 3–3 | 234 |
Total | 199 | 4–11 | 1539 |
Accuracy | |
---|---|
Overall Accuracy | |
Top-1 | |
Top-2 | |
Top-3 | |
Top-4 | |
Top-5 |
Accuracy | |
---|---|
Overall Accuracy | |
Top-1 | |
Top-2 | |
Top-3 | |
Top-4 | |
Top-5 |
Accuracy | |
---|---|
Overall Accuracy | |
Top-1 | |
Top-2 | |
Top-3 | |
Top-4 | |
Top-5 |
Accuracy | |
---|---|
Overall Accuracy | |
Top-1 | |
Top-2 | |
Top-3 | |
Top-4 | |
Top-5 |
Macro | Weighted by Prevalence | |
---|---|---|
One-vs-One ROC AUC scores | ||
One-vs-Rest ROC AUC scores |
Over All Accuracy | |||||
---|---|---|---|---|---|
Dataset | Session 1 | Session 2 | Session 1 to 2 | Session 2 to 1 | |
Contrastive learning | Without | 96.61 | 95.35 | 39.61 | 41.96 |
With | 98.20 | 97.40 | 46.06 | 47.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammour, N.; Jomaa, R.M.; Islam, M.S.; Bazi, Y.; Alhichri, H.; Alajlan, N. Deep Contrastive Learning-Based Model for ECG Biometrics. Appl. Sci. 2023, 13, 3070. https://doi.org/10.3390/app13053070
Ammour N, Jomaa RM, Islam MS, Bazi Y, Alhichri H, Alajlan N. Deep Contrastive Learning-Based Model for ECG Biometrics. Applied Sciences. 2023; 13(5):3070. https://doi.org/10.3390/app13053070
Chicago/Turabian StyleAmmour, Nassim, Rami M. Jomaa, Md Saiful Islam, Yakoub Bazi, Haikel Alhichri, and Naif Alajlan. 2023. "Deep Contrastive Learning-Based Model for ECG Biometrics" Applied Sciences 13, no. 5: 3070. https://doi.org/10.3390/app13053070
APA StyleAmmour, N., Jomaa, R. M., Islam, M. S., Bazi, Y., Alhichri, H., & Alajlan, N. (2023). Deep Contrastive Learning-Based Model for ECG Biometrics. Applied Sciences, 13(5), 3070. https://doi.org/10.3390/app13053070