Unmanned Surface Vehicle Using a Leader–Follower Swarm Control Algorithm
Abstract
:1. Introduction
2. USV Modeling and Leader–Follower Swarm Formation
2.1. Modeling of the USV
2.2. Modeling of the Leader–Follower Swarm Formation
3. Control Algorithm of the USV
3.1. CTE Compensation Algorithm
3.2. Swarm Control Algorithm
4. System Structure of the USV
4.1. Power System of the USV
4.2. Communication System of the USV
4.3. Configuration of the Operating System
4.3.1. Design of the Ground Operation Console
4.3.2. Design of the GUI Monitoring Program
5. Performance Test and Actual Sea Area Test of the Swarm USV
5.1. Sensor Performance Test
5.1.1. Communication Speed Test
- Communication speed test between the land operation console and each USV; and
- Communication speed test between the leader and follower USVs.
5.1.2. GNSS Performance Test
- Static performance testing; and
- Dynamic state performance testing.
5.2. USV Swarm Control Performance Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cha, H.J. BT News (Marine Bio Materials Research Center). Korean Soc. Biotechnol. Bioeng. 2017, 24, 64–68. [Google Scholar]
- Bentley, R.W. Global oil & gas depletion: An overview. Energy Policy 2002, 30, 189–205. [Google Scholar]
- Nicholson, J.W.; Healey, A.J. The present state of autonomous underwater vehicle (AUV) applications and technologies. Mar. Technol. Soc. J. 2008, 42, 44–51. [Google Scholar] [CrossRef]
- Kim, T.S.; Kim, C.H.; Lee, M.K. Study on the design and the control of an underwater construction robot for port construction. Korean Inst. Navig. Port Res. 2015, 39, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, T.; Meng, S.Y.; Zhuang, Y. System modeling and simulation of an unmanned aerial underwater vehicle. J. Mar. Sci. 2019, 7, 444. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Castaneda, H.; Gordilo, J.L. Design of an adaptive sliding mode control for a micro-AUV subject to water currents and parametric uncertainties. J. Mar. Sci. 2019, 7, 445. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.; Mcclintock, J.; Perteet, B.; Orqueda, A.A.O.; Cao, Y.; Fierro, R. Decentralized cooperative control—A multivehicle platform for research in networked embedded systems. IEEE Control Syst. Mag. 2007, 27, 58–78. [Google Scholar]
- Feddema, J.T.; Lewis, C.; Schoenwald, D.A. Decentralized control of cooperative robotic vehicles: Theory and application. IEEE Trans. Robot. Autom. 2002, 18, 852–864. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Seanor, B.; Campa, G.; Napolitano, M.R.; Rowe, L.; Gururajan, S.; Wan, S. Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 2006, 14, 1105–1112. [Google Scholar] [CrossRef]
- Sallama, A.; Abbod, M.; Khan, S.M. Applying Sequential Particle Swarm Optimization Algorithm to Improve Power Generation Quality. Int. J. Eng. Technol. Innov. 2014, 4, 223–233. [Google Scholar]
- Lee, K.R. Design of Decentralized Behavior-Based Network for the Formation Control and the Obstacle Avoidance of Multiple Robots. Ph.D. Thesis, Ajou University, Gyeonggi-do, Suwon-si, Republic of Korea, 2018. [Google Scholar]
- Park, S.B.; Park, J.H. A Study on Formation Control Algorithms of Multi-Obstacles Collision Avoidance for Autonomous Navigation of Swarm Marine Unmanned Moving Vehicles. J. KNST 2020, 3, 56–61. [Google Scholar] [CrossRef]
- Lee, S.J.; Hong, S.K. Leader Robot Controller Considering Follower with Input Constraint. Trans. Korean Inst. Electr. Eng. 2012, 61, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Tak, M.H.; Kim, J.S.; Joo, Y.H.; Ji, S.H. Formation Control for the Obstacle Avoidance of Swarm Robots based Leader-Follower Robots. Korean Inst. Electr. Eng. 2013, 10, 171–172. [Google Scholar]
- Julio, G.G.; Daniel, P.A.; Enrique, C.; Cristina, C. Unsupervised Adaptive Multi-Object Tracking-by-Clustering Algorithm with a Bio-Inspired System. IEEE Access 2022, 10, 24895–24908. [Google Scholar]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cho, H.J.; Jeong, S.K.; Ji, D.H.; Tran, N.H.; Vu, M.; Choi, H.S. Study on control system of integrated unmanned surface vehicle and underwater vehicle. Sensors 2020, 20, 2633. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jin, H.S.; Cho, H.J.; Jiafeng, H.; Jeong, S.K.; Ji, D.H.; Choi, H.S. A New Complex Marine Unmanned Platform and Field Test. J. Mar. Sci. Technol. 2020, 28, 538–547. [Google Scholar]
- Lee, S.J. Leader Robot Controller Considering Follower with Input Constraint. Master’s Thesis, Ajou University, Suwon-si, Republic of Korea, 2012. [Google Scholar]
- Dierks, T.; Jagannathan, S. Control of nonholonomic mobile robot formation: Back stepping kinematics into dynamics. In Proceedings of the IEEE Multi-Conference System Control, Suntec City, Singapore, 1–3 October 2007. [Google Scholar]
- Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T. A stable tracking control method for an autonomous mobile robot. In Proceedings of the IEEE International Conference Robotics and Automation, Cincinati, OH, USA, 13–18 May 1990. [Google Scholar]
- Consolini, L.; Morbide, F.; Prattichizzo, D.; Tosques, M. Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 2008, 44, 1343–1349. [Google Scholar] [CrossRef]
- Choi, I.S. Range Finder based Leader-Follower Formation Control of Multiple Mobile Robot in Outdoor Environments. Master’ Thesis, Korea University, Seoul, Republic of Korea, 2013. [Google Scholar]
- Cho, H.J. A Study on Control System of Wire Integrated Unmanned Surface Vehicle and Unmanned Underwater Vehicle. Master’ Thesis, Korea Maritime & Ocean University, Busan, Republic of Korea, 2020. [Google Scholar]
- Tadashi, T.; Omine, M.; Itani, K.; Ehsani, R. Evaluation of the Dynamic Accuracy of a GPS Receiver: Is dynamic accuracy the same as static accuracy? Eng. Agric. Environ. Food 2011, 4, 54–61. [Google Scholar]
Force and Moments | Linear and Angular Velocity | Position and Euler Angle | |
---|---|---|---|
Motion in the X direction (surge) | X | u | x |
Motion in the Y direction (sway) | Y | v | y |
Motion in the Z direction (heave) | Z | w | z |
Rotation about the X axis (roll) | K | p | |
Rotation about the Y axis (pitch) | M | q | |
Rotation about the Z axis (yaw) | N | r |
Size (L × W × H) | 1500 × 920 × 920 (mm) |
---|---|
Weight | 60 (kgf) |
Navigation sensor | Marineinnotec K-STAR |
Battery | 25.9 V, 75 Ah |
Camera | Hanwha QNO-6012R |
Main controller | MSI cubi 5 10M |
AP bridge | GT-Wave 860S |
Thruster | CiLab T80-60 |
Latitude | Longitude | |
---|---|---|
Point 1 | 35.0739915 | 129.0875807 |
Point 2 | 35.0741897 | 129.0880333 |
Point 3 | 35.0737509 | 129.0883212 |
Point 4 | 35.0735461 | 129.0878727 |
Latitude | Longitude | |
---|---|---|
Point 1 | 35.0749359 | 129.0842590 |
Point 2 | 35.0746651 | 129.0848846 |
Point 3 | 35.0750885 | 129.0851746 |
Point 4 | 35.0753899 | 129.0846252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Jeong, S.-K.; Ji, D.-H.; Park, H.-Y.; Kim, D.-Y.; Choo, K.-B.; Jung, D.-W.; Kim, M.-J.; Oh, M.-H.; Choi, H.-S. Unmanned Surface Vehicle Using a Leader–Follower Swarm Control Algorithm. Appl. Sci. 2023, 13, 3120. https://doi.org/10.3390/app13053120
Lee J-H, Jeong S-K, Ji D-H, Park H-Y, Kim D-Y, Choo K-B, Jung D-W, Kim M-J, Oh M-H, Choi H-S. Unmanned Surface Vehicle Using a Leader–Follower Swarm Control Algorithm. Applied Sciences. 2023; 13(5):3120. https://doi.org/10.3390/app13053120
Chicago/Turabian StyleLee, Ji-Hyeong, Sang-Ki Jeong, Dae-Hyeong Ji, Hae-Yong Park, Do-Young Kim, Ki-Beom Choo, Dong-Wook Jung, Myung-Jun Kim, Myoung-Hak Oh, and Hyeung-Sik Choi. 2023. "Unmanned Surface Vehicle Using a Leader–Follower Swarm Control Algorithm" Applied Sciences 13, no. 5: 3120. https://doi.org/10.3390/app13053120
APA StyleLee, J. -H., Jeong, S. -K., Ji, D. -H., Park, H. -Y., Kim, D. -Y., Choo, K. -B., Jung, D. -W., Kim, M. -J., Oh, M. -H., & Choi, H. -S. (2023). Unmanned Surface Vehicle Using a Leader–Follower Swarm Control Algorithm. Applied Sciences, 13(5), 3120. https://doi.org/10.3390/app13053120