Investigating the Poisson Ratio of 3D Printed Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printing
2.2. Specimen Preparation
2.3. DIC, Target Marker Design, and Assembly
2.4. Testing Procedure
2.5. Micro-Computed Tomography
3. Results
3.1. Poisson’s Ratio
3.2. Porosity, Sphericity and Compactness
3.3. Void Topology
4. Discussion
5. Conclusions
- Three-dimensionally printed concrete exhibits anisotropic behaviour. The Poisson ratios for the OI and OIII directions were 0.21 and 0.24, respectively;
- Three-dimensionally printed concrete exhibits larger Poisson ratios than its cast counterpart. The same concrete mix that was 3D printed was also cast and tested, which yielded a Poisson ratio of 0.18. Although only five specimens were tested per configuration, a one-way ANOVA test confirmed that the means of the three groups are statistically different;
- The -CT scanning results confirm the widespread presence of oblate voids in the 3D printed specimens of this study. For the OI direction, these voids are oblate with respect to the testing direction, whereas in the OIII direction, the voids are prolate. These varying void orientations are the cause of the observed anisotropy in printed concrete;
- Results from the compactness and sphericity investigations indicate that the printing process has a larger influence on porosity topography than the pumping and extrusion process. Hence, proper selection of printing parameters is paramount to reducing anisotropy;
- A spatial variation in porosity and void topography was observed over the height of the 3D printed element. Although not explicitly tested in this research, it is postulated that the Poisson ratio might vary spatially over the height of a printed object.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hibbeler, R.C. Mechanics of Materials, 8th ed.; Fan, S.C., Ed.; Pearson Education: Singapore, 2011; ISBN 978-981-06-8509-6. [Google Scholar]
- Evans, K.E. Auxetic Polymers: A New Range of Materials. Endeavour 1991, 15, 170–174. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Schlangen, E.; Luković, M.; Šavija, B. Cementitious Cellular Composites with Auxetic Behavior. Cem. Concr. Compos. 2020, 111, 103624. [Google Scholar] [CrossRef]
- Grant, R.J.; Lorenzo, M.; Smart, J. The Effect of Poisson’s Ratio on Stress Concentrations. J. Strain. Anal. Eng. Des. 2007, 42, 95–104. [Google Scholar] [CrossRef]
- Brauns, J.; Rocens, K. The Effect of Material Strength on the Behaviour of Concrete-Filled Steel Elements. J. Civ. Eng. Manag. 2004, 10, 177–182. [Google Scholar] [CrossRef]
- Anson, M.; Newman, K. The Effect of Mix Proportions and Method of Testing on Poisson’s Ratio for Mortars and Concretes. Mag. Concr. Res. 1966, 18, 115–130. [Google Scholar] [CrossRef]
- Kruger, J.; du Plessis, A.; van Zijl, G. An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete. Addit. Manuf. 2021, 37, 101740. [Google Scholar] [CrossRef]
- van den Heever, M.; du Plessis, A.; Kruger, J.; van Zijl, G. Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete. Cem. Concr. Res. 2022, 153, 106695. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb, A.G.F.; Thorpe, T. Hardened Properties of High-Performance Printing Concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Liu, H.; Ding, T. Finite Element Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure. Addit. Manuf. 2021, 39, 101712. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Hardened Properties of 3D Printed Concrete: The Influence of Process Parameters on Interlayer Adhesion. Cem. Concr. Res. 2019, 119, 132–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; She, W.; Yang, L.; Liu, G.; Yang, Y. Rheological and Harden Properties of the High-Thixotropy 3D Printing Concrete. Constr. Build. Mater. 2019, 201, 278–285. [Google Scholar] [CrossRef]
- Nerella, V.N.; Hempel, S.; Mechtcherine, V. Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing. Constr. Build. Mater. 2019, 205, 586–601. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-Scale Digital Concrete Construction—CONPrint3D Concept for on-Site, Monolithic 3D-Printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; De Schutter, G.; Van Tittelboom, K. Extrusion-Based Concrete 3D Printing from a Material Perspective: A State-of-the-Art Review. Cem. Concr. Compos. 2021, 115, 103855. [Google Scholar] [CrossRef]
- Davis, T.; Healy, D.; Bubeck, A.; Walker, R. Stress Concentrations around Voids in Three Dimensions: The Roots of Failure. J. Struct. Geol. 2017, 102, 193–207. [Google Scholar] [CrossRef] [Green Version]
- van den Heever, M.; Bester, F.; Kruger, J.; van Zijl, G. Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing. J. Build. Eng. 2021, 44, 102944. [Google Scholar] [CrossRef]
- van den Heever, M.; Bester, F.; Kruger, J.; van Zijl, G. Numerical Modelling Strategies for Reinforced 3D Concrete Printed Elements. Addit. Manuf. 2022, 50, 102569. [Google Scholar] [CrossRef]
- van den Heever, M.; Bester, F.; Pourbehi, M.; Kruger, J.; Cho, S.; van Zijl, G. Characterizing the Fissility of 3D Concrete Printed Elements via the Cohesive Zone Method. In 2nd RILEM International Conference on Concrete and Digital Fabrication; Springer: Eindhoven, The Netherlands, 2020. [Google Scholar]
- Bi, M.; Tran, P.; Xia, L.; Ma, G.; Xie, Y.M. Topology Optimization for 3D Concrete Printing with Various Manufacturing Constraints. Addit. Manuf. 2022, 57, 102982. [Google Scholar] [CrossRef]
- Wu, Y.C.; Yang, Q.; Kong, X.; Zhi, P.; Xiao, J. Uncertainty Quantification for the Representative Volume Element of Geometrically Monoclinic 3D Printed Concrete. Int. J. Solids Struct. 2021, 226–227, 111102. [Google Scholar] [CrossRef]
- Vantyghem, G.; De Corte, W.; Shakour, E.; Amir, O. 3D Printing of a Post-Tensioned Concrete Girder Designed by Topology Optimization. Autom. Constr. 2020, 112, 103084. [Google Scholar] [CrossRef]
- Valle-Pello, P.; Álvarez-Rabanal, F.P.; Alonso-Martínez, M.; del Coz Díaz, J.J. Numerical Study of the Interfaces of 3D-Printed Concrete Using Discrete Element Method. Materwiss. Werksttech. 2019, 50, 629–634. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Suiker, A.S.J. Structural Failure during Extrusion-Based 3D Printing Processes. Int. J. Adv. Manuf. Technol. 2019, 104, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Suiker, A.S.J. Mechanical Performance of Wall Structures in 3D Printing Processes: Theory, Design Tools and Experiments. Int. J. Mech. Sci. 2018, 137, 145–170. [Google Scholar] [CrossRef] [Green Version]
- Nedjar, B. Incremental Viscoelasticity at Finite Strains for the Modelling of 3D Concrete Printing. Comput. Mech. 2022, 69, 233–243. [Google Scholar] [CrossRef]
- Nguyen-Van, V.; Panda, B.; Zhang, G.; Nguyen-Xuan, H.; Tran, P. Digital Design Computing and Modelling for 3-D Concrete Printing. Autom. Constr. 2021, 123, 103529. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early Age Mechanical Behaviour of 3D Printed Concrete: Numerical Modelling and Experimental Testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Triaxial Compression Testing on Early Age Concrete for Numerical Analysis of 3D Concrete Printing. Cem. Concr. Compos. 2019, 104, 103344. [Google Scholar] [CrossRef]
- Moini, R.; Olek, J.; Zavattieri, P.D.; Youngblood, J.P. Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement Paste Hollow Cylinders. Cem. Concr. Compos. 2022, 131, 104538. [Google Scholar] [CrossRef]
- Ahmed, L. Dynamic Measurements for Determining Poisson’s Ratio of Young Concrete. Nord. Concr. Res. 2018, 58, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Allos, A.E.; Martin, L.H. Factors affecting Poisson’s ratio for concrete. Build. Environ. 1981, 16, 1–9. [Google Scholar] [CrossRef]
- Wangler, T.; Pileggi, R.; Gürel, S.; Flatt, R.J. A Chemical Process Engineering Look at Digital Concrete Processes: Critical Step Design, Inline Mixing, and Scaleup. Cem. Concr. Res. 2022, 155, 106782. [Google Scholar] [CrossRef]
- Kruger, J.; Zeranka, S.; van Zijl, G. A Rheology-Based Quasi-Static Shape Retention Model for Digitally Fabricated Concrete. Constr. Build. Mater. 2020, 254, 119241. [Google Scholar] [CrossRef]
- Kruger, J.; van Zijl, G. A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication. Addit. Manuf. 2021, 37, 101654. [Google Scholar] [CrossRef]
- ASTM C469; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM: West Conshohocken, PA, USA, 2002.
- Kruger, J.; Van Den Heever, M.; Cho, S.; Zeranka, S.; van Zijl, G. High-Performance 3D Printable Concrete Enhanced with Nanomaterials. In Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS 2019), Rovinj, Croatia, 20–22 March 2019; pp. 1–8. [Google Scholar]
- Moelich, G.M. Plastic Shrinkage Cracking and Other Evaporation-Related Impairments in 3D Printed and Cast Concrete; Stellenbosch University: Stellenbosch, South Africa, 2021. [Google Scholar]
- GOM GOM Correlate Pro. Available online: https://www.gom.com/en/products/zeiss-quality-suite/gom-correlate-pro (accessed on 18 January 2023).
- Panda, B.; Mohamed, N.A.N.; Paul, S.C.; Singh, G.V.P.B.; Tan, M.J.; Šavija, B. The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete. Materials 2019, 12, 2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Constituent | Description | kg |
---|---|---|
Cement | PPC SureTech 52.5 N | 579 |
Fly ash | DuraPozz Class F | 165 |
Silica fume | Chryso DSF | 83 |
Fine aggregate | Malmesbury 4.75 mm MPS 1 | 1167 |
Water | Potable Tap Water | 261 |
Superplasticiser | Chryso Premia 310 | 5.75 |
Resolution Pixels | Working Distance mm | Field-of-View mm | Pixel Size μm | Ellipse Major Axis μm | Ellipse Minor Axis μm |
---|---|---|---|---|---|
2084 × 1536 | 585 | 112 × 83 | ≈50 | 656 | 547 |
Specimen Configuration | Specimen Number | Height mm | Diameter mm | mm | mm | mm/mm | mm/mm | ||
---|---|---|---|---|---|---|---|---|---|
1 | 59.61 | 29.81 | 0.01 | −0.1 | 0.000336 | −0.001678 | 0.2 | 0.18 | |
2 | 59.67 | 29.84 | 0.01 | −0.13 | 0.000335 | −0.002179 | 0.15 | ||
CAST-CM | 3 | 59.65 | 29.95 | 0.01 | −0.11 | 0.000334 | −0.001844 | 0.18 | |
4 | 59.59 | 29.81 | 0.01 | −0.1 | 0.000335 | −0.001678 | 0.2 | ||
5 | 59.62 | 29.93 | 0.01 | −0.11 | 0.00034 | −0.001845 | 0.18 | ||
1 | 59.01 | 29.76 | 0.01 | −0.11 | 0.000336 | −0.001864 | 0.18 | 0.21 | |
2 | 59.04 | 29.77 | 0.01 | −0.10 | 0.000336 | −0.001609 | 0.21 | ||
OI | 3 | 59.00 | 30.10 | 0.01 | −0.09 | 0.000332 | −0.001441 | 0.23 | |
4 | 59.03 | 29.76 | 0.01 | −0.10 | 0.000336 | −0.001660 | 0.20 | ||
5 | 59.03 | 29.71 | 0.01 | −0.10 | 0.000337 | −0.001643 | 0.20 | ||
1 | 59.95 | 29.83 | 0.01 | −0.08 | 0.000335 | −0.001334 | 0.25 | 0.24 | |
2 | 59.95 | 29.82 | 0.01 | −0.09 | 0.000335 | −0.001501 | 0.22 | ||
OIII | 3 | 59.93 | 29.80 | 0.01 | −0.08 | 0.000336 | −0.001335 | 0.25 | |
4 | 59.95 | 29.83 | 0.01 | −0.1 | 0.000335 | −0.001668 | 0.20 | ||
5 | 59.95 | 29.80 | 0.01 | −0.08 | 0.000336 | −0.001335 | 0.25 |
Groups | Count | Sum | Average | Variance | ||
---|---|---|---|---|---|---|
Cast-CM | 5 | 0.92 | 0.18 | 0.000358 | ||
OI | 5 | 1.03 | 0.21 | 0.000321 | ||
OIII | 5 | 1.18 | 0.24 | 0.000523 | ||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between groups | 0.0069 | 2 | 0.00347 | 8.6661 | 0.0047 | 3.8853 |
Within groups | 0.0048 | 12 | 0.00040 | |||
Total | 0.0118 | 14 |
Specimen Characteristics | Unit | CAST-CM | CAST-3DPC | 3DPCOIB | 3DPCOIT |
---|---|---|---|---|---|
Voxel | Voxel | 19,188,360 | 21,931,200 | 59,887,344 | 35,192,596 |
Proj. area (yz) | mm2 | 960.37 | 2166.47 | 3375.27 | 2873.17 |
Volume | mm3 | 204.31 | 233.52 | 637.68 | 374.73 |
Proj. area (xz) | mm2 | 1015.22 | 2339.31 | 3878.10 | 2771.90 |
Surface area | mm2 | 6028.75 | 12,937.23 | 23,833.75 | 17,764.57 |
Proj. area (xy) | mm2 | 1080.25 | 2362.37 | 4502.17 | 3350.73 |
Material volume | mm3 | 12,495.13 | 12,425.50 | 10,599.98 | 13,780.40 |
Defect volume | mm3 | 204.32 | 233.52 | 637.68 | 374.73 |
Defect ratio/porosity | % | 1.61 | 1.84 | 5.67 | 2.65 |
Specimen Configuration | Cartesian Direction | Regression Model Gradient | Normalised Gradient | Normalised Variance | Normalised 3D Void Graphic |
---|---|---|---|---|---|
CAST-CM | X | 0.7835 | 1.00 | 0.007 | |
Y | 0.7876 | 1.01 | |||
Z | 0.6931 | 0.88 | |||
CAST-3DCP | X | 0.7265 | 1.00 | 0.010 | |
Y | 0.6637 | 0.91 | |||
Z | 0.6467 | 0.89 | |||
3DCPOIB | X | 0.7839 | 1.00 | 0.084 | |
Y | 0.7158 | 0.91 | |||
Z | 0.4699 | 0.60 | |||
3DCPOIT | X | 0.7740 | 1.00 | 0.044 | |
Y | 0.7160 | 0.93 | |||
Z | 0.5521 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruger, J.; van der Westhuizen, J.-P. Investigating the Poisson Ratio of 3D Printed Concrete. Appl. Sci. 2023, 13, 3225. https://doi.org/10.3390/app13053225
Kruger J, van der Westhuizen J-P. Investigating the Poisson Ratio of 3D Printed Concrete. Applied Sciences. 2023; 13(5):3225. https://doi.org/10.3390/app13053225
Chicago/Turabian StyleKruger, Jacques, and Jean-Pierré van der Westhuizen. 2023. "Investigating the Poisson Ratio of 3D Printed Concrete" Applied Sciences 13, no. 5: 3225. https://doi.org/10.3390/app13053225
APA StyleKruger, J., & van der Westhuizen, J. -P. (2023). Investigating the Poisson Ratio of 3D Printed Concrete. Applied Sciences, 13(5), 3225. https://doi.org/10.3390/app13053225