Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Research Gap and Originality Highlights
2. Model Development
2.1. Demand-Side Model
2.2. Supply-Side Model
3. Data Inventory
4. Results and Discussion
4.1. Prediction of the Monthly Electricity Demand in Zambia
4.2. Supply-Side Analysis
4.2.1. Baseline Scenario
4.2.2. Zambia’s Forecasted Electricity Deficit
4.2.3. Supply-Side Scenario Analysis
- -
- Integration of renewable energy (RE): the total installed capacity shares of renewable energy technologies will increase to 11.89% and 30% in 2024 and 2035, respectively;
- -
- No coal scenario (NC): the share of coal-based power generation decreases to 0% in 2035;
- -
- Emission target scenario: the GHG emissions will decrease by 10%, 20%, 30%, 40%, and 50% in 2035.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesselring, R. The electricity crisis in Zambia: Blackouts and social stratification in new mining towns. Energy Res. Soc. Sci. 2017, 30, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Zambia—Access To Electricity (% Of Population)—2022 Data 2023 Forecast 1990–2020 Historical. Available online: https://tradingeconomics.com/zambia/access-to-electricity-percent-of-population-wb-data.html (accessed on 26 November 2022).
- Greenhouse Gas Emissions Factsheet: Zambia|Global Climate Change. Available online: https://www.climatelinks.org/resources/greenhouse-gas-emissions-factsheet-zambia (accessed on 28 November 2022).
- Abdallah, L.; El-Shennawy, T. Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J. Eng. 2013, 2013, 845051. [Google Scholar] [CrossRef] [Green Version]
- CO2 and Greenhouse Gas Emissions—Our World in Data. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 26 November 2022).
- Eckstein, D. Global Climate Risk Index 2021; Disaster Displacement: Geneva, Switzerland, 2021. [Google Scholar]
- The Energy Sector Report 2019—Energy Regulation Board. Available online: https://www.erb.org.zm/document/the-energy-sector-report-2019 (accessed on 28 November 2022).
- Discussing Climate Change and Renewable Energy in Zambia—Enelfoundation.org. Available online: https://www.enelfoundation.org/all-news/news/2020/10/discussing-climate-change-and-renewable-energy-in-zambia (accessed on 28 November 2022).
- Zambia Electricity Cost of Service Study Final Summary Consolidated Report Energy Market and Regulatory Consultants Limited (Part of the MRC Group) Draft Final Report; Energy Market and Regulatory Consultants Limited: Edinburgh, UK, 2021.
- Tembo, B.; Merven, B. Policy options for the sustainable development of Zambia’s electricity sector. J. Energy S. Afr. 2013, 24, 16–27. [Google Scholar] [CrossRef]
- Allington, L.; Cannone, C. Selected ‘Starter Kit’ energy system modelling data for Zambia (#CCG). Res. Square 2021. [Google Scholar] [CrossRef]
- Dioha, M.O. Energy system models for sub-saharan african countries—A systematic review. J. Sustain. Energy 2017, 8, 159–168. [Google Scholar]
- Awopone, A.K.; Zobaa, A.F. Analyses of Optimum Generation Scenarios for Sustainable Power Generation in Ghana. 2017. Available online: http://bura.brunel.ac.uk/handle/2438/14137 (accessed on 23 February 2023).
- Boke, M.T.; Moges, S.A.; Dejen, Z.A. Optimizing renewable-based energy supply options for power generation in Ethiopia. PLoS ONE 2022, 17, e0262595. [Google Scholar] [CrossRef]
- Nyoni, K.J. The Zambian Energy Transition (ZET): A Case Study for OsemOSYS and FlexTool Background And Modelling Questions. Res. Square 2022. [Google Scholar] [CrossRef]
- Mwandila, G.; Mwanza, M.; Sikhwivhilu, K.; Siame, J.; Mutanga, S.; Simposya, A. Modeling energy requirements for a biogas-supported decentralized Water treatment systems for communities in chambishi (Zambia) and diepsloot (South Africa) townships. Renew. Energy Focus 2021, 37, 20–26. [Google Scholar] [CrossRef]
- Libanda, B.; Paeth, H. Modelling wind speed across Zambia: Implications for wind energy. Int. J. Climatol. 2022, 43, 772–786. [Google Scholar] [CrossRef]
- Mwanza, M.; Chachak, J.; Çetin, N.; Ülgen, K. Assessment of solar energy source distribution and potential in Zambia. Period. Eng. Nat. Sci. 2017, 5, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, N.S. Modeling sustainable long-term electricity supply-demand in Africa. Appl. Energy 2017, 190, 1047–1067. [Google Scholar] [CrossRef]
- Malehmirchegini, L.; Farzaneh, H. Demand response modeling in a day-ahead wholesale electricity market in Japan, considering the impact of customer risk aversion and dynamic price elasticity of demand. Energy Rep. 2022, 8, 11910–11926. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018; Available online: https://otexts.com/fpp2/seasonal-arima.html (accessed on 29 November 2022).
- Krey, V.; Havlik, P.; Kishimoto, P.; Fricko, O.; Zilliacus, J.; Gidden, M.; Strubegger, M.; Kartasasmita, G.; Ermolieva, T.; Forsell, N.; et al. MESSAGEix-GLOBIOM Documentation; International Institute for Applied System Analysis (IIASA): Laxenburg, Austria, 2020. [Google Scholar] [CrossRef]
- Abrar, S.; Farzaneh, H. Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach. Energies 2021, 14, 3303. [Google Scholar] [CrossRef]
- Rogner, H. Overview of MESSAGE ix Modeling Framework Introduction to Scenarios and Modelling for Energy Planning. IIASA. Available online: https://docs.messageix.org/en/v1.2.0 (accessed on 23 December 2022).
- ZESCO Limited. Available online: https://www.zesco.co.zm/ (accessed on 30 November 2022).
- Ministry of Energy—MOE. Available online: https://www.moe.gov.zm/ (accessed on 30 November 2022).
- Zambia—Countries & Regions—IEA. Available online: https://www.iea.org/countries/zambia (accessed on 23 December 2022).
- National Renewable Energy Laboratory (NREL) Home Page|NREL. Available online: https://www.nrel.gov/ (accessed on 30 November 2022).
- Energy Regulation Board—A Proactive, Firm & Fair Energy Regulator. Available online: https://www.erb.org.zm/ (accessed on 30 November 2022).
- Zambia Coal Reserves—Data, Chart|TheGlobalEconomy.com. Available online: https://www.theglobaleconomy.com/Zambia/coal_reserves/ (accessed on 20 December 2022).
- Opportunities For Renewable Energy in Zambia; Bundesministerium für Wirtschaft und Klimaschutz: Berlin, Germany, 2019.
- Mphepo Power. Available online: https://www.mphepopower.com/ (accessed on 19 January 2023).
- Ministry of National Development Planning. 7 National Development Plan (2017–2021) Republic of Zambia; Ministry of National Development Planning: Lusaka, Zambia, 2017.
- Global Wind Atlas. Available online: https://globalwindatlas.info/en (accessed on 30 November 2022).
- Jain, P. Coal Power in Zambia: Time to Rethink. South Afr. J. Policy Dev. 2017, 3, 2. [Google Scholar]
Purpose | Focus Sector | Horizon | Methodological Approach | Tool/Techniques Employed | References |
---|---|---|---|---|---|
Modeling energy requirements for biogas-supported decentralized water treatment systems for communities in Chambishi (Zambia) and Diepsloot (South Africa) townships. | Supply | - | Optimization | Buswell mathematical model | [16] |
Modeling of the wind energy potential in Zambia. | Supply | 2031–2050 | Simulation and dynamical downscaling approaches | High CORDEX-Africa models | [17] |
Assessment of solar energy distribution and potential in Zambia. | Supply | - | Simulation | ArcGIS and array model (excel) | [18] |
Scenario analysis of the sustainable development of Zambia’s electricity sector. | Demand and Supply | 2008–2030 | Simulating/accounting/optimization | LEAP/MESSAGE | [10] |
Modeling sustainable long-term electricity supply-demand in Africa. | Demand and Supply | - | Accounting/Simulation | LEAP | [19] |
Input Parameters | Variables | Output |
---|---|---|
Technical data (efficiency, installed capacity, etc.) | Energy flows (inlet and outlet) of technologies | Optimal cost of the system |
Cost data (cost analysis of the system, such as capital and operation costs, etc.) | Optimal energy-generating mix | |
Economic data (interest and inflation rates, externalities, etc.) | Capacity of technologies | GHG emissions |
Energy demand | ||
Environmental data (emission factors, carbon bounds) | ||
Resources availability (reference energy system structure) |
Technology | Flexibility Parameter |
---|---|
Load | −0.1 |
Wind | −0.08 |
Solar PV | −0.05 |
Coal | 0.15 |
Gas CC | 0.5 |
Hydropower | 0.5 |
Oil/Gas Steam | 1 |
Gas CT | 1 |
Hydro | Solar | OIL(FO) 1 | Wind | Coal | OIL(HSD) 2 | |
---|---|---|---|---|---|---|
Investment Costs (ZMW/kW) | 2227 | 1146 | 800 | 2438 | 1900 | 924 |
Variable O&M costs (ZMW/kW) | 4.5 | - | 105.4 | 85.5 | 52.7 | 85.5 |
Fixed Costs (ZMW/kW) | 8.5 | 40 | 20 | 40 | 50 | 20 |
Efficiency (%) | 85 | 33 | 38 | 35 | 40 | 33 |
Operation Factor (%) | 97 | 99 | 70 | 97 | 85 | 70 |
Capacity Factor (%) | 42 | 25 | 80 | 35 | 40 | 80 |
Base Year Generation [MWa] | 1307.4 | 48.6 | 60 | 0 | 163.5 | 45.6 |
Base Year Capacity [MW] | 3500 | 48.6 | 59.97 | 0 | 600 | 45.5 |
Historical Capacity [MW] | 2400 | 89.14 | 150 | 0 | 330 | 84 |
Category | Resource | Annual Potential | Ref. |
---|---|---|---|
Fossil Fuel | Coal | 49.6 [Mt/y] | [30] |
Renewable | Hydro | 6000 [MWa] | [31] |
Wind | 150 [MWa] | [32] | |
Solar | 600 [MWa] | [31] |
MODEL | AIC | BIC | LOG-LIKELIHOOD | RMSE | MAPE | MAE | AICc |
---|---|---|---|---|---|---|---|
ARIMA (2,1,2) (3,1,1) | −459.04 | −432.38 | 238.52 | 38,187.99 | 2.751 | 26,963.92 | −457.69 |
Scenario | Annual Emissions [kt] | LCOE [Cents/kWh] | RE Share [%] * |
---|---|---|---|
Baseline (BL) | 10,444.4 | 7.68 | 45.40 |
Renewable Scenario (RE) | 5059.8 | 8.02 | 73.80 |
No Coal (NC) | 9357.8 | 7.82 | 50.84 |
Scenario | Sub-Scenario | Annual Emissions [kt] | LCOE 1 [Cents/kWh] | RE Share [%] 2 |
---|---|---|---|---|
Emission Targets | 10% | 9400 | 7.98 | 51.20 |
20% | 8355.6 | 8.11 | 54.32 | |
30% | 7311.1 | 8.20 | 57.60 | |
40% | 6266.7 | 8.28 | 61.30 | |
50% | 5222.2 | 8.36 | 65.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daka, P.P.; Farzaneh, H. Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Appl. Sci. 2023, 13, 3508. https://doi.org/10.3390/app13063508
Daka PP, Farzaneh H. Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Applied Sciences. 2023; 13(6):3508. https://doi.org/10.3390/app13063508
Chicago/Turabian StyleDaka, Precious P., and Hooman Farzaneh. 2023. "Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia" Applied Sciences 13, no. 6: 3508. https://doi.org/10.3390/app13063508
APA StyleDaka, P. P., & Farzaneh, H. (2023). Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Applied Sciences, 13(6), 3508. https://doi.org/10.3390/app13063508