The 2022 Seismic Sequence in the Northern Adriatic Sea and Its Long-Term Simulation
Abstract
:1. Introduction
2. Seismotectonic Settings
3. Earthquake Simulation Method
- The simulation of seismic sources involves the use of planar quadrilateral fault segments with specific spatial position, shape, and size. To accurately represent the various seismic events that may occur, each fault segment is discretized by square cells with sizes determined by the minimum magnitude of events expected in the output simulated catalogue.
- At the start of the simulation, stress values are randomly assigned to each cell from a specified stress range. This randomization is essential to ensure that the simulation represents the natural variation in stress levels that exists in real-life seismic events.
- Every fault segment is subjected to constant and uniform tectonic stress loading. This loading is based on geologically or geodetically inferred slip rate, providing the simulation with a more accurate representation of the tectonic stresses that occur in real seismic events.
- The simulation involves the nucleation of a new event in a cell when its stress exceeds a given threshold strength. This threshold strength is essential to accurately model the conditions that trigger seismic events in reality.
- Whenever a cell ruptures, a co-seismic stress-drop of 3.3 MPa is assigned to it. This stress-drop is a crucial aspect of the simulation as it represents the stress released by the rupturing cell, which is a significant factor in the generation of seismic events.
- Following the rupture of a cell, the co-seismic Coulomb stress is transferred from the rupturing cell to all other neighbouring cells. This transfer occurs based on the theory of elasticity, taking into account the strike, dip, and rake of each cell.
- The rupture expands to neighbouring cells based on heuristic rules that simulate a weakening mechanism. These rules are based on the behaviour of real-life seismic events and are essential to accurately represent the spread of a seismic event.
- If the positive Coulomb stress transferred from neighbouring cells causes a cell’s status to exceed the threshold strength, it is allowed to rupture more than once in the same earthquake. This is an important aspect of the simulation as it allows for the accurate representation of aftershocks and the complex nature of seismic events.
- The simulation algorithm allows ruptures to jump from one fault segment to another (even if they belong to two different faults) if their distance is shorter than a limit assigned by the user. This feature is essential to accurately represent the interaction of seismic events and the way in which they can trigger each other.
- The rupture stops when the stress of no neighbouring cell exceeds the computed strength threshold. This feature is important to ensure that the simulation accurately represents the natural behaviour of seismic events, which eventually reach a point where no further energy can be released.
4. Simulation of the Seismicity in the Adriatic Thrust Fault Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPTI | The Italian Parametric Earthquake Catalogue |
DISS | The Database of Individual Seismogenic Sources |
EMTC | Euro-Mediterranean Tsunami Catalogue |
CFTI | Strong Italian Earthquakes Catalogue |
References
- ISIDe_Working_Group. Italian Seismological Instrumental and Parametric Database (ISIDe); Istituto Nazionale di Geofisica e Vulcanologia: Roma, Italy, 2007. [Google Scholar] [CrossRef]
- Tertulliani, A.; Antonucci, A.; Berardi, M.; Borghi, A.; Brunelli, G.; Caracciolo, C.H.; Castellano, C.; D’Amico, V.; Del Mese, S.; Ercolani, E.; et al. Gruppo Operativo Quest Rilievo Macrosismico MW 5.5 Costa Marchigiana del 9/11/2022 Rapporto Finale del 15/11/2022. Available online: https://www.earth-prints.org/handle/2122/15794 (accessed on 23 December 2022).
- Schultz, K.W.; Sachs, M.K.; Yoder, M.R.; Rundle, J.B.; Turcotte, D.L.; Heien, E.M.; Donnellan, A. Virtual quake: Statistics, co-seismic deformations and gravity changes for driven earthquake fault systems. In Proceedings of the International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), Matsushima, Japan, 22–26 July 2014; Springer: Cham, Switzerland, 2017; pp. 29–37. [Google Scholar]
- Christophersen, A.; Rhoades, D.; Colella, H. Precursory seismicity in regions of low strain rate: Insights from a physics-based earthquake simulator. Geophys. J. Int. 2017, 209, 1513–1525. [Google Scholar] [CrossRef]
- Field, E.H. How physics-based earthquake simulators might help improve earthquake forecasts. Seismol. Res. Lett. 2019, 90, 467–472. [Google Scholar] [CrossRef]
- Console, R.; Vannoli, P.; Carluccio, R. Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy. Appl. Sci. 2022, 12, 2062. [Google Scholar] [CrossRef]
- Console, R.; Murru, M.; Vannoli, P.; Carluccio, R.; Taroni, M.; Falcone, G. Physics-based simulation of sequences with multiple main shocks in Central Italy. Geophys. J. Int. 2020, 223, 526–542. [Google Scholar] [CrossRef]
- Console, R.; Carluccio, R.; Papadimitriou, E.; Karakostas, V. Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system. J. Geophys. Res. Solid Earth 2015, 120, 326–343. [Google Scholar] [CrossRef]
- Console, R.; Vannoli, P.; Carluccio, R. The seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulator. Geophys. J. Int. 2018, 212, 916–929. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.; Geist, E.L.; Console, R.; Carluccio, R. Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in California. J. Geophys. Res. Solid Earth 2018, 123, 10–761. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- DISS_Working_Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger Than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia: Roma, Italy, 2021; Available online: http://diss.rm.ingv.it/diss/ (accessed on 14 February 2023). [CrossRef]
- Vannoli, P.; Basili, R.; Valensise, G. New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). J. Seismol. 2004, 8, 297–312. [Google Scholar] [CrossRef]
- Fantoni, R.; Franciosi, R. Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rend. Lincei 2010, 21, 197–209. [Google Scholar] [CrossRef]
- Kastelic, V.; Vannoli, P.; Burrato, P.; Fracassi, U.; Tiberti, M.M.; Valensise, G. Seismogenic sources in the Adriatic Domain. Mar. Pet. Geol. 2013, 42, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Elter, P.; Giglia, G.; Tongiorgi, M.; Trevisan, L. Tensional and Compressional Areas in the Recent (Tortonian to Present) Evolution of the Northern Apennines. Bollettino di Geofisica Teorica ed Applicata 1975, 17, 3–18. [Google Scholar]
- Maesano, F.E.; Toscani, G.; Burrato, P.; Mirabella, F.; D’Ambrogi, C.; Basili, R. Deriving thrust fault slip rates from geological modeling: Examples from the Marche coastal and offshore contraction belt, Northern Apennines, Italy. Mar. Pet. Geol. 2013, 42, 122–134. [Google Scholar] [CrossRef]
- Rovida, A.N.; Locati, M.; Camassi, R.D.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani CPTI15, Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2022. [Google Scholar] [CrossRef]
- Vannoli, P.; Vannucci, G.; Bernardi, F.; Palombo, B.; Ferrari, G. The source of the 30 October 1930 M w 5.8 Senigallia (Central Italy) earthquake: A convergent solution from instrumental, macroseismic, and geological data. Bull. Seismol. Soc. Am. 2015, 105, 1548–1561. [Google Scholar] [CrossRef]
- Vannoli, P.; Bernardi, F.; Palombo, B.; Vannucci, G.; Console, R.; Ferrari, G. New constraints shed light on strike-slip faulting beneath the southern Apennines (Italy): The 21 August 1962 Irpinia multiple earthquake. Tectonophysics 2016, 691, 375–384. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ferrari, G.; Mariotti, D.; Comastri, A.; Tarabusi, G.; Sgattoni, G.; Valensise, G. CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 aC-1997) e nell’area Mediterranea (760 aC-1500); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2018. [Google Scholar] [CrossRef]
- Maramai, A.; Graziani, L.; Brizuela, B. Euro-Mediterranean Tsunami Catalogue (EMTC), Version 2.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Leonard, M. Self-consistent earthquake fault-scaling relations: Update and extension to stable continental strike-slip faults. Bull. Seismol. Soc. Am. 2014, 104, 2953–2965. [Google Scholar] [CrossRef]
- Console, R.; Carluccio, R. Earthquake Simulators Development and Application. In Statistical Methods and Modeling of Seismogenesis; Wiley: New York, NY, USA, 2021; p. 27. [Google Scholar]
- Console, R.; Carluccio, R.; Murru, M.; Papadimitriou, E.; Karakostas, V. Physics-Based Simulation of Spatiotemporal Patterns of Earthquakes in the Corinth Gulf, Greece, Fault System. Bull. Seismol. Soc. Am. 2022, 112, 98–117. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci. 2016, 3, 480–486. [Google Scholar] [CrossRef]
- Rundle, J.B.; Stein, S.; Donnellan, A.; Turcotte, D.L.; Klein, W.; Saylor, C. The complex dynamics of earthquake fault systems: New approaches to forecasting and nowcasting of earthquakes. Rep. Prog. Phys. 2021, 84, 076801. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, P.K.; Perez-Oregon, J.; Skordas, E.S.; Sarlis, N.V. Estimating the epicenter of an impending strong earthquake by combining the seismicity order parameter variability analysis with earthquake networks and nowcasting: Application in the Eastern Mediterranean. Appl. Sci. 2021, 11, 10093. [Google Scholar] [CrossRef]
- Christopoulos, S.R.G.; Varotsos, P.K.; Perez-Oregon, J.; Papadopoulou, K.A.; Skordas, E.S.; Sarlis, N.V. Natural Time Analysis of Global Seismicity. Appl. Sci. 2022, 12, 7496. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Uyeda, S.; Kamogawa, M. Natural-time analysis of critical phenomena: The case of seismicity. Europhys. Lett. 2010, 92, 29002. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, P.; Sarlis, N.V.; Skordas, E.S.; Uyeda, S.; Kamogawa, M. Natural time analysis of critical phenomena. Proc. Natl. Acad. Sci. USA 2011, 108, 11361–11364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Date | Multiple | Associated Tsunami with Intensity | ||
---|---|---|---|---|---|
1 | September 1269 * | 5.6 | VIII | n.a. | Generated by a landslide ** |
2 | 14 April 1672 | 5.6 | VIII | n.a. | SA:3; PI:IV |
3 | 23 December 1690 | 5.6 | VIII | n.a. | SA:3; PI:IV |
4 | 25 December 1786 | 5.7 | VIII | T *** | No record |
5 | 17 March 1875 | 5.7 | VIII | n.a. | SA:3; PI:IV |
6 | 17 May 1916 | 5.8 | VIII | T | No record |
7 | 16 August 1916 | 5.5 | VI | T | SA:2; PI:IV |
8 | 2 January 1924 | 5.5 | VII-VIII | n.a. | No record |
9 | 30 October 2022 | 5.5 | V **** | T | No record |
Magnitude Threshold | Number of Events | (yrs) | (yrs) | |
---|---|---|---|---|
5.5 | 121 | 814 | 733 | 0.90 |
6.0 | 84 | 1170 | 797 | 0.68 |
6.5 | 57 | 1713 | 690 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Console, R.; Vannoli, P.; Carluccio, R. The 2022 Seismic Sequence in the Northern Adriatic Sea and Its Long-Term Simulation. Appl. Sci. 2023, 13, 3746. https://doi.org/10.3390/app13063746
Console R, Vannoli P, Carluccio R. The 2022 Seismic Sequence in the Northern Adriatic Sea and Its Long-Term Simulation. Applied Sciences. 2023; 13(6):3746. https://doi.org/10.3390/app13063746
Chicago/Turabian StyleConsole, Rodolfo, Paola Vannoli, and Roberto Carluccio. 2023. "The 2022 Seismic Sequence in the Northern Adriatic Sea and Its Long-Term Simulation" Applied Sciences 13, no. 6: 3746. https://doi.org/10.3390/app13063746
APA StyleConsole, R., Vannoli, P., & Carluccio, R. (2023). The 2022 Seismic Sequence in the Northern Adriatic Sea and Its Long-Term Simulation. Applied Sciences, 13(6), 3746. https://doi.org/10.3390/app13063746