An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays
Abstract
:1. Introduction
2. Numerical Model
2.1. Model Geometry
2.2. Material Properties
2.3. Permeability Parameters of Soil
2.4. Model Verification
3. Effect of OCR on Penetration Resistance
3.1. Effect of OCR on Cone Resistance Factor Nc
3.2. OCR Calculation Formula
4. Effect of OCR on Pore Pressure Dissipation
4.1. Effect of OCR on Initial Pore Pressure
4.2. Effect of OCR on Pore Pressure Dissipation Curve
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Feng, X.L.; Lin, L.; Zhuang, Z.Y.; Pan, S. The relationship between geotechnical parameters and sedimentary environment of soil layers since holocene in modern Huanghe subaqueous delta. Coast. Eng. 1999, 18, 1–7. [Google Scholar]
- Jia, Y.G.; Dong, H.G.; Shan, H.X.; Liu, X. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary. Rock Soil Mech. 2007, 28, 2029–2035. [Google Scholar]
- Zhang, Y.; Feng, X.; Ding, C.; Liu, Y.; Liu, T. Study of cone penetration rate effects in the Yellow River delta silty soils with different clay contents and state parameters. Ocean Eng. 2022, 250, 110982. [Google Scholar] [CrossRef]
- Fei, X.U.; Wang, W.M.; Zhang, Q.Q. Monitoring analysis of super large and deep foundation pit in alluvial plain of Yellow River. Chin. J. Geotech. Eng. 2014, 36, 471–478. [Google Scholar]
- ASTM D5778-07; Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- Lu, Q.; Randolph, M.F.; Hu, Y.; Bugarski, I.C. A numerical study of cone penetration in clay. Geotechnique 2004, 54, 257–267. [Google Scholar] [CrossRef]
- Bemben, S.M.; Myers, H.J. The influence of rate of penetration on static cone resistance in Connecticut River Valley varved clay. In Proceedings of the European Symposium on Penetration Testing, Stockholm, Sweden, 5–7 June 1974; Volume 2, pp. 33–34. [Google Scholar]
- Senneset, K.; Sandven, R.; Janbu, N. Interpretation of piezocone tests in cohesive soils. In Proceedings of the International Symposium on Penetration Testing, Orlando, FL, USA, 20–24 March 1988; pp. 939–953. [Google Scholar]
- Leroueil, S.; Demers, D.; La Rochelle, P.; Martel, G.; Virely, D. Practical use of the piezocone in eastern Canada clays. In Proceedings of the International Symposium on Cone Penetration Testing, Linkoping, Sweden, 4–5 October 1995; Volume 2, pp. 515–521. [Google Scholar]
- Na, Y.M.; Choa, V.; Teh, C.I.; Chang, M.F. Geotechnical parameters of reclaimed sandfill from the cone penetration test. Can. Geotech. J. 2005, 42, 91–109. [Google Scholar] [CrossRef]
- Schneider, J.A.; Randolph, M.F.; Mayne, P.W.; Ramsey, N.R. Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. J. Geotech. Geoenviron. Eng. 2008, 134, 1569–1586. [Google Scholar] [CrossRef]
- Song, C.; Bekele, B.; Silvey, A. Pore Pressure Responses of Overconsolidated Soils in a Partially Drained Piezocone Penetration Test. J. Eng. Mech. 2019, 145, 04019017. [Google Scholar] [CrossRef]
- Silva, M.F.; White, D.J.; Bolton, M.D. An analytical study of the effect of penetration rate on piezocone tests in clay. Int. J. Numer. Anal. Methods Geomech. 2010, 30, 501–527. [Google Scholar] [CrossRef]
- Sully, J.P.; Robertson, P.K.; Campanella, R.G.; Woeller, D.J. An approach to evaluation of field CPTu dissipation data in overconsolidated fine-grained soils. Can. Geotech. J. 1999, 36, 369–381. [Google Scholar] [CrossRef]
- Jia, Y.G.; Shan, H.X.; Yang, X.J.; Meng, X.M.; Chang, F.Q.; Zheng, J.W. Sediment Dynamics and Geologic Hazards in the Estuary of Yellow River, China; Science Press: Beijing, China, 2011. [Google Scholar]
- Zheng, G.; Yan, Z.-X.; Lei, H.-Y.; Wang, S.-T. Experimental studies on unloading deformation properties of silty clay of first marine layer in Tianjin urban area. Rock Soil Mech. 2008, 29, 1237–1242. [Google Scholar]
- Mayne, P.W. Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts. Soils Found. 1991, 31, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Lunne, T.; Robertson, P.K.; Powell, J.J. Cone-Penetration Testing in Geotechnical Practice; Spon Press: London, UK, 2001. [Google Scholar]
- Torstensson, B.A. Pore Pressure Sounding Instrument. In Proceedings of the ASCE Specialty Conference on In-Situ Measurement of Soil Properties ISMOSP, Raleigh, NC, USA, 1–4 June 1975; pp. 48–54. [Google Scholar]
- Houlsby, G.T.; Teh, C.I. Analysis of the Piezocone in Clay. In Proceedings of the International Symposium on Penetration Testing, Orlando, FL, USA, 20–24 March 1988; pp. 777–783. [Google Scholar]
- Mahmoodzadeh, H.; Randolph, M.F.; Wang, D. Numerical simulation of piezocone dissipation test in clays. Geotechnique 2014, 64, 657–666. [Google Scholar] [CrossRef]
- Chai, J.; Sheng, D.; Carter, J.P.; Zhu, H. Coefficient of consolidation from non-standard piezocone dissipation curves. Comput. Geotech. 2012, 41, 13–22. [Google Scholar] [CrossRef]
- Yi, J.T.; Goh, S.; Lee, F. A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique 2012, 62, 707–719. [Google Scholar] [CrossRef]
- Dassault Systemes Simulia Corp. Abaqus Analysis User’s Manual Version 6.14; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2014. [Google Scholar]
- Goh, T.L. Stabilization of an Excavation by an Embedded Improved Soil Layer. Ph.D. Thesis, National University of Singapore, Singapore, 2003. [Google Scholar]
- Purwana, O.A. Centrifuge Model Study on Spudcan Extraction in Soft Clay; University of Western Australia: Crawley, Australia, 2007. [Google Scholar]
- House, A.R.; Oliveira, J.R.M.S.; Randolph, M.F. Evaluating the coefficient of consolidation using penetration tests. Int. J. Phys. Model. Geotech. 2001, 1, 17–25. [Google Scholar] [CrossRef]
- Kim, K.; Prezzi, M.; Salgado, R.; Lee, W. Effect of penetration rate on cone penetration resistance in saturated clayey soils. J. Geotech. Geoenviron. Eng. 2008, 134, 1142–1153. [Google Scholar] [CrossRef]
- Wood, D. Soil Behaviour and Critical State Soil Mechanics; University Press: Cambridge, UK, 1990. [Google Scholar]
Properties | Kaolin Silty Clay | Yellow River Delta Silty Clay |
---|---|---|
Clay content (%) | - | 30 |
D50 (mm) | - | 0.029 |
Liquid limit, LL (%) | 80 | 35.2 |
Plasticity Index, PI (%) | 45 | 11.9 |
USCS classification | MH | CL |
Angle of internal friction, φ′ (°) | 23 | 31.2 |
Void ratio at p′ = 1 kPa on virgin consolidated line, eN | 2.35 | 1.17 |
Slope of normal consolidation line, λ | 0.244 | 0.096 |
Slope of swelling line, κ | 0.053 | 0.02 |
Plastic compression ratio, Λ = 1 − κ/λ | 0.783 | 0.792 |
Poisson ratio, ν | 0.3 | 0.3 |
Submerged density, ρ′ (g/cm3) | 0.63 | 0.86 |
Coefficient of consolidation at 30 kPa (OCR = 1), cv (m2/s) | 7.33 × 10−7 | 7.04 × 10−7 |
Coefficient of permeability at 30 kPa (OCR = 1), k (m/s) | 2.35 × 10−8 | 1.11 × 10−8 |
Consolidation Degree | T* = cht/r2Ir0.5 | ||
---|---|---|---|
OCR = 1 | OCR = 3 | OCR = 5 | |
20% | 0.038 | 0.021 | 0.009 |
30% | 0.078 | 0.035 | 0.015 |
40% | 0.142 | 0.058 | 0.025 |
50% | 0.245 | 0.097 | 0.043 |
60% | 0.439 | 0.162 | 0.072 |
70% | 0.804 | 0.260 | 0.120 |
80% | 1.600 | 0.452 | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Zhang, Y.; Han, J.; Wang, K.; Tian, Z.; Liu, T. An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays. Appl. Sci. 2023, 13, 3797. https://doi.org/10.3390/app13063797
Deng S, Zhang Y, Han J, Wang K, Tian Z, Liu T. An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays. Applied Sciences. 2023; 13(6):3797. https://doi.org/10.3390/app13063797
Chicago/Turabian StyleDeng, Shenggui, Yan Zhang, Jun Han, Kaidi Wang, Zhuangcai Tian, and Tao Liu. 2023. "An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays" Applied Sciences 13, no. 6: 3797. https://doi.org/10.3390/app13063797
APA StyleDeng, S., Zhang, Y., Han, J., Wang, K., Tian, Z., & Liu, T. (2023). An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays. Applied Sciences, 13(6), 3797. https://doi.org/10.3390/app13063797