The Effect of Drying–Wetting Cycles on Soil Inorganic Nitrogen Transformation in Drip-Irrigated Cotton Field Soil in Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Incubation Experiment
2.3. Sampling Method
2.4. Chemical Analyses
2.5. Statistical Analysis
3. Results
3.1. NO3− and NH4+ Dynamics during the DW Strength Experiment
3.2. NO3− and NH4+ Dynamics during the DW Frequency Experiments
3.3. NO3− and NH4+ Dynamics during the Soil Wetting Time Experiment
3.4. Net N Mineralization
4. Discussion
4.1. N Transformation
4.2. N Mineralization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seohye, C.; Seung, H.H.; Seung, O.L. Practical approach to predict Geyser occurrence in Stromwater Drainage System. KSCE J. Civ. Eng. 2019, 23, 1108–1117. [Google Scholar]
- Markus, G.D.; Andrew, L.L.; Lisa, V.A.; O’Gorman, P.A.; Nicola, M. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar]
- Sun, D.S.; Li, K.J.; Bi, Q.F.; Zhu, J.; Zhang, Q.C.; Jin, C.W.; Lu, L.L.; Lin, X.Y. Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation. Sci. Total Environ. 2017, 574, 735–743. [Google Scholar] [CrossRef]
- Blackwell, M.S.A.; Brookes, P.C.; de la Fuente-Martinez, N.; Gordon, H.; Murray, P.J.; Snars, K.E.; Williams, J.K.; Bol, R.; Haygarth, P.M. Chapter 1—Phosphorus Solubilization and Potential Transfer to Surface Waters from the Soil Microbial Biomass Following Drying–Rewetting and Freezing–Thawing. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 106, pp. 1–35. [Google Scholar]
- Werner, B.; Egbert, M. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 4, 808–824. [Google Scholar]
- Chen, Y.Y.; Fan, P.S.; Mo, Z.W.; Kong, L.L.; Tian, H.; Duan, M.Y.; Li, L.; Wu, L.J.; Wang, Z.M.; Tang, X.R.; et al. Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. J. Plant Growth Regul. 2021, 40, 379–387. [Google Scholar] [CrossRef]
- Azadeh, B.; Erland, B.; Johannes, R. Drying–Rewetting Cycles Affect Fungal and Bacterial Growth Differently in an Arable Soil. Microb. Ecol. 2010, 60, 419–428. [Google Scholar]
- Sarah, E.; Uif, D.; Oskar, F.; Christina, K. Synergistic effects of diffusion and microbial physiology reproduce the Birch effect in a micro-scale model. Soil Biol. Biochem. 2016, 93, 28–37. [Google Scholar]
- Peter, G.; Boris, O.; Brigitte, M.; Justin, S.; Markus, R.; Sonia, I.S. Erratum: Global assessment of trends in wetting and drying over land. Geoscience 2014, 7, 716–721. [Google Scholar]
- Forda, D.J.; Cookson, W.R.; Adamsa, M.A.; Grierson, P.F. Role of soil drying in nitrogen mineralization and microbial community function in semi-arid grasslands of north-west Australia. Soil Biol. Biochem. 2007, 39, 1557–1569. [Google Scholar] [CrossRef]
- He, Y.T.; Xu, X.L.; Christoph, K.; Zhang, X.Z.; Shi, P.L. Leaf litter of a dominant cushion plant shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant Soil 2014, 383, 415–426. [Google Scholar] [CrossRef]
- Ma, Z.W.; Gao, X.P.; Mario, T.; Kuang, W.N.; Gui, D.W.; Zeng, F.J. Urea fertigation sources affect nitrous oxide emission from a drip-fertigated cotton field in northwestern China. Agric. Ecosyst. Environ. 2018, 265, 22–30. [Google Scholar] [CrossRef]
- Gao, J.Q.; Feng, J.; Zhang, X.W.; Yu, F.H.; Xu, X.L.; Kuzyakov, Y. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil. CATENA 2016, 145, 285–290. [Google Scholar] [CrossRef]
- Hussain, M.; Cheema, S.A.; Abbas, R.Q.; Ashraf, M.F.; Shahzad, M.; Farooq, M. Choice of nitrogen fertilizer affects grain yield and agronomic nitrogen use efficiency of wheat cultivars. J. Plant Nutr. 2018, 41, 2330–2343. [Google Scholar] [CrossRef]
- Shasha, Z.; Qing, Z.; Lisa, N.; Yuntao, H.; Wolfgang, W. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biol. Biochem. 2019, 135, 304–315. [Google Scholar]
- Song, M.H.; Jiang, J.; Xu, X.L.; Shi, P.L. Correlation between CO2 efflux and net nitrogen mineralization and its response to external C or N supply in an alpine meadow soil. Pedosphere 2011, 21, 666–675. [Google Scholar] [CrossRef]
- Noah, F.; Joshua, P.S. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 2002, 34, 777–787. [Google Scholar]
- Hu, Z.K.; Chen, C.Y.; Chen, X.Y.; Yao, J.N.; Jiang, L.; Liu, M.Q. Home-field advantage in soil respiration and its resilience to drying and rewetting cycles. Sci. Total Environ. 2021, 750, 141736. [Google Scholar] [CrossRef]
- Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe. Biogeosciences 2013, 10, 7361. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.E.; Schimel, J.P.; Meixner, T.; Sickman, J.O.; Melack, J.M. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol. Biochem. 2005, 37, 2195–2204. [Google Scholar] [CrossRef]
- Ajdary, K.; Singh, D.K.; Singh, A.K.; Manoj, K. Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agric. Water Manag. 2007, 89, 15–28. [Google Scholar] [CrossRef]
- Fallovo, C.; Colla, G.; Schreiner, M.; Krumbein, A.; Schwarz, D. Effect of nitrogen form and radiation on growth and mineral concentration of two Brassica species. Sci. Hortic. 2009, 123, 170–177. [Google Scholar] [CrossRef]
- Rui, Q.; Ru, G.; Yang, L.; Muhammad, A.N.; Sadam, H.; Liu, D.H.; Zhang, P.; Chen, X.L.; Ren, X.L. Biodegradable film mulching combined with straw incorporation can significantly reduce global warming potential with higher spring maize yield. Agric. Ecosyst. Environ. 2022, 340, 108181. [Google Scholar]
- Sepideh, B.N.; Hossein, M.H.; Hassan, E.; Teimour, R. Rice straw and composted azolla alter carbon and nitrogen mineralization and microbial activity of a paddy soil under drying–rewetting cycles. Appl. Soil Ecol. 2020, 154, 103638. [Google Scholar]
- Frank, D.A.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Vander, V.M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerstin, H.; Werner, B.; Egbert, M. Leaching losses of inorganic N and DOC following repeated drying and wetting of a spruce forest soil. Plant Soil 2007, 300, 21–34. [Google Scholar]
- Agehara, S.; Warncke, D.D. Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Fernando, E.M.; Stefano, M.; Claire, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar]
- Adriana, G.A.; de Souza, J.R.M.; Hermano, M.Q.; William, N.; José, I.P.; Thais, D.S.M.; Carlos, A.K.T. Mineralization of Nitrogen Forms in Soil Cultivated with Yellow Melon under Organic and Mineral Fertilization. Commun. Soil Sci. Plant Anal. 2021, 52, 1706–1719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Yang, Z.; Pu, S.; Ma, X. The Effect of Drying–Wetting Cycles on Soil Inorganic Nitrogen Transformation in Drip-Irrigated Cotton Field Soil in Northwestern China. Appl. Sci. 2023, 13, 3892. https://doi.org/10.3390/app13063892
Ma H, Yang Z, Pu S, Ma X. The Effect of Drying–Wetting Cycles on Soil Inorganic Nitrogen Transformation in Drip-Irrigated Cotton Field Soil in Northwestern China. Applied Sciences. 2023; 13(6):3892. https://doi.org/10.3390/app13063892
Chicago/Turabian StyleMa, Honghong, Zhiying Yang, Shenghai Pu, and Xingwang Ma. 2023. "The Effect of Drying–Wetting Cycles on Soil Inorganic Nitrogen Transformation in Drip-Irrigated Cotton Field Soil in Northwestern China" Applied Sciences 13, no. 6: 3892. https://doi.org/10.3390/app13063892
APA StyleMa, H., Yang, Z., Pu, S., & Ma, X. (2023). The Effect of Drying–Wetting Cycles on Soil Inorganic Nitrogen Transformation in Drip-Irrigated Cotton Field Soil in Northwestern China. Applied Sciences, 13(6), 3892. https://doi.org/10.3390/app13063892