Association between Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma and Periodontopathic Bacteria: A Cross-Sectional Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Background Information
2.3. Clinical Assessment
2.4. Saliva Sampling and Bacterial Flora Analysis
2.5. Blood Sampling and Medical Examination
2.6. Measurement of Salivary IgA Concentration
2.7. Measurement of Serum Antibody Titers against Periodontal Pathogens
2.8. Statistical Analysis
3. Results
3.1. Participant Information, Lifestyle Habits, and Periodontal Examination
3.2. Bacterial Examination
3.3. Medical Examination
3.4. Correlation between Salivary IgA Levels and Bacterial Ratio in Saliva
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okanoue, T.; Umemura, A.; Yasui, K.; Itoh, Y. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in Japan. J. Gastroenterol. Hepatol. 2011, 26 (Suppl. S1), 153–162. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matteoni, C.A.; Younossi, Z.M.; Gramlich, T.; Boparai, N.; Liu, Y.C.; McCullough, A.J. Non-alcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology 1999, 116, 1413–1419. [Google Scholar] [CrossRef]
- Zopf, S.; Kremer, A.E.; Neurath, M.F.; Siebler, J. Advances in hepatitis C therapy: What is the current state—What come’s next. World J. Hepatol. 2016, 8, 139–147. [Google Scholar] [CrossRef]
- Koda, M.; Nagahara, T.; Matono, T.; Sugihara, T.; Mandai, M.; Ueki, M.; Ohyama, K.; Hosho, K.; Okano, J.; Kishimoto, Y.; et al. Nucleotide analogs for patients with HBV-related hepatocellular carcinoma increase the survival rate through improved liver function. Intern. Med. 2009, 48, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takuma, Y.; Nouso, K. Non-alcoholic steatohepatitis-associated hepatocellular carcinoma: Our case series and literature review. World J. Gastroenterol. 2010, 16, 1436–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilg, H.; Moschen, A.R. Evolution of inflammation in non-alcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Iwasaki, T.; Hirose, A.; Azuma, T.; Ohashi, T.; Watanabe, K.; Obora, A.; Deguchi, F.; Kojima, T.; Isozaki, A.; Tomofuji, T. Correlation between ultrasound-diagnosed non-alcoholic fatty liver and periodontal condition in a cross-sectional study in Japan. Sci. Rep. 2018, 8, 7496. [Google Scholar] [CrossRef] [PubMed]
- Alazawi, W.; Bernabe, E.; Tai, D.; Janicki, T.; Kemos, P.; Samsuddin, S.; Syn, W.K.; Gillam, D.; Turner, W. Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver disease. PLoS ONE 2017, 12, e0185902. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Acharya, C.; Sahingur, S.E.; Bajaj, J.S. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight 2017, 2, e94416. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, M.; Naka, S.; Nakano, K.; Wada, K.; Endo, H.; Mawatari, H.; Imajo, K.; Nomura, R.; Hokamura, K.; Ono, M.; et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Kamata, Y.; Kessoku, T.; Shimizu, T.; Kobayashi, T.; Kurihashi, T.; Takashiba, S.; Hatanaka, K.; Hamada, N.; Kodama, T.; et al. A cross-sectional study assessing the relationship between non-alcoholic fatty liver disease and periodontal disease. Sci. Rep. 2022, 12, 13621. [Google Scholar] [CrossRef]
- Furusho, H.; Miyauchi, M.; Hyogo, H.; Inubushi, T.; Ao, M.; Ouhara, K.; Hisatune, J.; Kurihara, H.; Sugai, M.; Hayes, C.N.; et al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J. Gastroenterol. 2013, 48, 1259–1270. [Google Scholar] [CrossRef]
- Nwizu, N.; Wactawski-Wende, J.; Genco, R.J. Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol. 2000 2020, 83, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017, 77, 6777–6787. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Li, S.; Ma, Z.; Liang, S.; Shan, T.; Zhang, M.; Zhu, X.; Zhang, P.; Liu, G.; Zhou, F.; et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent. Cancer 2016, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human microbiome Fusobacterium Nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer. Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef] [Green Version]
- Boehm, E.T.; Thon, C.; Kupcinskas, J.; Steponaitiene, R.; Skieceviciene, J.; Canbay, A.; Malfertheiner, P.; Link, A. Fusobacterium nucleatum is associated with worse prognosis in Lauren’s diffuse type gastric cancer patients. Sci. Rep. 2020, 10, 16240. [Google Scholar] [CrossRef]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Parhi, L.; Alon-Maimon, T.; Sol, A.; Nejman, D.; Shhadeh, A.; Fainsod-Levi, T.; Yajuk, O.; Isaacson, B.; Abed, J.; Maalouf, N.; et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 2020, 11, 3259. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Shimomura, Y.; Higurashi, T.; Sugi, Y.; Arimoto, J.; Umezawa, S.; Uchiyama, S.; Matsumoto, M.; Nakajima, A. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 2019, 68, 1335–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, N.; Takaki, A.; Tomofuji, T.; Endo, Y.; Kasuyama, K.; Ekuni, D.; Yasunaka, T.; Yamamoto, K.; Morita, M. Stage of hepatocellular carcinoma is associated with periodontitis. J. Clin. Periodontol. 2011, 38, 1015–1020. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Jinno, S.; Nakamura, Y.; Nagata, M.; Takahashi, T. 1-Kestose consumption during pregnancy and lactation increases the levels of IgA in the milk of lactating mice. Biosci. Biotechnol. Biochem. 2014, 78, 861–866. [Google Scholar] [CrossRef]
- Japanese Committee for Clinical Laboratory Standards. Common Reference Intervals for Major Clinical Laboratory Tests in Japan. 2022. Available online: https://www.jccls.org/wp-content/uploads/2022/10/kijyunhani20221031.pdf (accessed on 2 February 2023).
- Araki, E.; Goto, A.; Kondo, T.; Noda, M.; Noto, H.; Origasa, H.; Osawa, H.; Taguchi, A.; Tanizawa, Y.; Tobe, K.; et al. Japanese Clinical Practice Guideline for Diabetes 2019. Diabetol. Int. 2020, 11, 165–223. [Google Scholar] [CrossRef]
- Ohara-Nemoto, Y.; Nakasato, M.; Shimoyama, Y.; Baba, T.T.; Kobayakawa, T.; Ono, T.; Yaegashi, T.; Kimura, S.; Nemoto, T.K. Degradation of incretins and modulation of blood glucose levels by periodontopathic bacterial dipeptidyl peptidase 4. Infect. Immun. 2017, 85, e00277-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Yang, F.; Wang, Y.; Guo, Y. Factors associated with liver cancer prognosis after hepatectomy: A retrospective cohort study. Medicine 2021, 100, e27378. [Google Scholar] [CrossRef]
- Manresa, C.; Sanz-Miralles, E.C.; Twigg, J.; Bravo, M. Supportive periodontal therapy (SPT) for maintaining the dentition in adults treated for periodontitis. Cochrane Database Syst. Rev. 2018, 1, CD009376. [Google Scholar] [CrossRef] [PubMed]
- Omura, Y.; Kitamoto, M.; Hyogo, H.; Yamanoue, T.; Tada, Y.; Boku, N.; Nishisaka, T.; Miyauchi, M.; Takata, T.; Chayama, K. Morbidly obese patient with non-alcoholic steatohepatitis-related cirrhosis who died from sepsis caused by dental infection of Porphyromonas gingivalis: A case report. Hepatol. Res. 2016, 46, E210–E215. [Google Scholar] [CrossRef]
- Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum—Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Li, M.; Zhang, Y.; Sun, M.; Wang, L.; Lin, J.; Cui, Y.; Chen, Q.; Jin, C.; et al. Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nat. Commun. 2022, 13, 1248. [Google Scholar] [CrossRef]
- Goradel, N.H.; Heidarzadeh, S.; Jahangiri, S.; Farhood, B.; Mortezaee, K.; Khanlarkhani, N.; Negahdari, B. Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J. Cell. Physiol. 2019, 234, 2337–2344. [Google Scholar] [CrossRef]
- Hooshmand, B.; Khatib, R.; Hamza, A.; Snower, D.; Alcantara, A.L. Fusobacterium nucleatum: A cause of subacute liver abscesses with extensive fibrosis crossing the diaphragm, mimicking actinomycosis. Germs 2019, 9, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Ohara, N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. Jpn. Dent. Sci. Rev. 2017, 53, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.S.; Yang, J.W.; Oh, S.J.; Shin, Y.Y.; Kang, M.J.; Park, H.R.; Seo, Y.; Kim, H.S. Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway. BMB Rep. 2021, 54, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W. Fusobacterium nucleatum: A commensal-turned pathogen. Curr. Opin. Microbiol. 2015, 23, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36466. [Google Scholar] [CrossRef]
- Morozumi, T.; Nakagawa, T.; Nomura, Y.; Sugaya, T.; Kawanami, M.; Suzuki, F.; Takahashi, K.; Abe, Y.; Sato, S.; Makino-Oi, A.; et al. Salivary pathogen and serum antibody to assess the progression of chronic periodontitis: A 24-mo prospective multicenter cohort study. J. Periodontal Res. 2016, 51, 768–778. [Google Scholar] [CrossRef]
- Papapanou, P.N.; Neiderud, A.M.; Disick, E.; Lalla, E.; Miller, G.C.; Dahlén, G. Longitudinal stability of serum immunoglobulin G responses to periodontal bacteria. J. Clin. Periodontol. 2004, 31, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Miletic, I.D.; Schiffman, S.S.; Miletic, V.D.; Sattely-Miller, E.A. Salivary IgA secretion rate in young and elderly persons. Physiol. Behav. 1996, 60, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Bachrach, G.; Muster, Z.; Raz, I.; Chaushu, G.; Stabholz, A.; Nussbaum, G.; Gutner, M.; Chaushu, S. Assessing the levels of immunoglobulins in the saliva of diabetic individuals with periodontitis using checkerboard immunodetection. Oral Dis. 2008, 14, 51–59. [Google Scholar] [CrossRef]
- Harrison, T.; Bigler, L.; Tucci, M.; Pratt, L.; Malamud, F.; Thigpen, J.T.; Streckfus, C.; Younger, H. Salivary sIgA concentrations and stimulated whole saliva flow rates among women undergoing chemotherapy for breast cancer: An exploratory study. Spec. Care Dentist. 1998, 18, 109–112. [Google Scholar] [CrossRef]
- Guerra, R.N.; Oliveira-Junior, J.J.; Mouchrek-Filho, J.C.; Liberio, S.A.; Lima, M.V.; Paim, D.B.; Brito, C.X.; Mendonça, C.; Nascimento, F.R.; Pereira, A.L. Salivary evaluation of pediatric patients with cancer, before and after antineoplasic treatment. J. Oral Pathol. Med. 2012, 41, 527–532. [Google Scholar] [CrossRef]
- Challacombe, S.J.; Sweet, S.P. Oral mucosal immunity and HIV infection: Current status. Oral Dis 2002, 8 (Suppl. S2), 55–62. [Google Scholar] [CrossRef] [PubMed]
- Vigano, S.; Bobisse, S.; Coukos, G.; Perreau, M.; Harari, A. Cancer and HIV-1 infection: Patterns of chronic antigen exposure. Front. Immunol. 2020, 11, 1350. [Google Scholar] [CrossRef]
- Lopez, M.C.; Colombo, L.L.; Huang, D.S.; Watson, R.R. Suppressed mucosal lymphocyte populations by LP-BM5 murine leukemia virus infection producing murine AIDS. Reg. Immunol. 1992, 4, 162–167. [Google Scholar]
- Carpenter, G.H. Salivary factors that maintain the normal oral commensal microflora. J. Dent. Res. 2020, 99, 644–649. [Google Scholar] [CrossRef]
- Chang, E.; Kobayashi, R.; Fujihashi, K.; Komiya, M.; Kurita-Ochiai, T. Impaired salivary SIgA antibodies elicit oral dysbiosis and subsequent induction of alveolar bone loss. Inflamm. Res. 2021, 70, 151–158. [Google Scholar] [CrossRef]
- Chen, W.A.; Dou, Y.; Fletcher, H.M.; Boskovic, D.S. Local and systemic effects of Porphyromonas gingivalis infection. Microorgnisms 2023, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Toyama, N.; Ekuni, D.; Yokoi, A.; Fukuhara, D.; Islam, M.M.; Sawada, N.; Nakashima, Y.; Nakahara, M.; Sumita, I.; Morita, M. Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study. Front. Cell. Infect. Microbiol. 2022, 12, 957890. [Google Scholar] [CrossRef]
- Vogtmann, E.; Hua, X.; Yu, G.; Purandare, V.; Hullings, A.G.; Shao, D.; Wan, Y.; Li, S.; Dagnall, C.L.; Jones, K.; et al. The oral microbiome and lung cancer risk: An analysis of 3 prospective cohort studies. J. Natl. Cancer Inst. 2022, 114, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Hu, Y.; Wang, Y.; Jiang, W.; He, Z.; Zhu, C.; Ma, R.; Huang, Z. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing. Arch. Oral Biol. 2015, 60, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
Parameter | NASH Group (N = 40) | NASH-HCC Group (N = 20) | p-Value (99% CI) |
---|---|---|---|
Gender (Female/Male) | 18/22 | 6/14 | 0.26 |
Smoking (non-smoker/smoker) | 9/31 | 4/16 | 0.376 (0.363–0.388) |
Age (years) | 60.5 (55–70) | 78.5 (65–81.8) | <0.001 * |
BMI | 27.5 (25.8–31.1) | 25.8 (22.2–31.5) | 0.278 (0.266–0.289) |
Number of meals per day | 3 (3–3) | 3 (3–3) | 0.218 (0.208–0.229) |
Number of snacks per day | 1 (0–2) | 1.5 (1–2.8) | 0.386 (0.373–0.398) |
Frequency of brushing teeth per day | 2 (1–2) | 2 (2–2) | 0.799 (0.789–0.809) |
Duration of brushing teeth each time (min) | 3 (3–5) | 4 (3–5) | 0.210 (0.199–0.220) |
Number of dentist visits (times/year) | 0 (0–2) | 2 (0.7–4) | 0.005 * (0.003–0.007) |
Parameter | NASH Group (N = 40) | NASH-HCC Group (N = 20) | p-Value (99% CI) |
---|---|---|---|
Number of teeth | 26 (21–28) | 25 (19.5–26.8) | 0.324 (0.312–0.336) |
PD (mm) | 2.9 (2.6–3.2) | 2.9 (2.6–3.2) | 0.855 (0.846–0.864) |
BOP (%) | 15.0 (10.7–30.9) | 15.2 (7.1–30.6) | 0.456 (0.443–0.468) |
Tooth mobility | 0 (0–0.6) | 0 (0–0.1) | 0.495 (0.482–0.507) |
PlI | 0.9 (0.7–1.4) | 0.9 (0.7–1.4) | 0.927 (0.921–0.934) |
PESA (mm2) | 1355 (1174–1654) | 1306 (938–1494) | 0.241 (0.230–0.252) |
PISA (mm2) | 234 (141–380) | 194 (86–506) | 0.408 (0.395–0.420) |
Parameter | NASH Group (N = 40) | NASH-HCC Group (N = 20) | p-Value (99% CI) |
---|---|---|---|
Serum antibody titer | |||
P. gingivalis IgG titer (EU) | 0.09 (0.05–0.18) | 0.18 (0.11–0.26) | 0.031 * (0.026–0.035) |
F. nucleatum IgG titer (EU) | 0.01 (0–0.03) | 0.04 (0.02–0.09) | 0.003 * (0.002–0.005) |
The ratio of periodontopathogenic bacteria in saliva | |||
P. gingivalis ratio (%) | 0.03 (0–1.25) | 0.46 (0–0.69) | 0.381 (0.369–0.394) |
T. forsythia ratio (%) | 0.14 (0.06–0.35) | 0.07 (0.02–0.31) | 0.400 (0.387–0.412) |
T. denticola ratio (%) | 0.05 (0–0.2) | 0 (0–0.03) | 0.013 * (0.010–0.016) |
F. nucleatum ratio (%) | 0.14 (0–0.35) | 0.35 (0–0.61) | 0.009 * (0.007–0.012) |
P. intermedia ratio (%) | 0 (0–0.33) | 0 (0–0.23) | 0.752 (0.741–0.763) |
Diversity of bacterial flora | |||
Shannon index | 6.75 (6.51–7.14) | 6.42 (6.04–6.64) | <0.001 * |
Parameter | NASH Group (N = 40) | NASH-HCC Group (N = 20) | p-Value (99% CI) |
---|---|---|---|
Endotoxin (EU) | 0.13 (0.08–0.2) | 0.21 (0.16–0.28) | <0.001 * |
CRP (mg/dL) | 0.14 (0.09–0.44) | 0.15 (0.07–0.5) | 0.734 (0.722–0.745) |
CBG (mg/dL) | 118 (101–153) | 140 (122–163) | 0.04 * (0.035–0.045) |
LDL-cholesterol (mg/dL) | 109 (93–131) | 104 (90–135) | 0.782 (0.772–0.793) |
HDL-cholesterol (mg/dL) | 56 (45–60) | 53.5 (50.3–60.8) | 0.925 (0.918–0.931) |
TG (mg/dL) | 154 (103–267) | 122 (71–283) | 0.271 (0.260–0.283) |
AST (U/L) | 50.5 (26.3–62) | 38 (29–65.5) | 0.831 (0.821–0.841) |
ALT (U/L) | 51.5 (25.3–71.8) | 32 (24–54.5) | 0.167 (0.157–0.176) |
GGT (U/L) | 65 (36.3–126) | 66.5 (49.5–111.3) | 0.684 (0.672–0.696) |
T-Bil (mg/dL) | 0.8 (0.6–1) | 1.3 (0.75–1.7) | 0.014 * (0.011–0.017) |
IgA Flow Rate in Saliva (μg/min) | |||
---|---|---|---|
Correlation Coefficient | p-Value | N | |
P. gingivalis ratio (%) | 0.07 | 0.6 | 60 |
T. forsythia ratio (%) | 0.03 | 0.8 | 60 |
T. denticola ratio (%) | 0.03 | 0.8 | 60 |
F. nucleatum ratio (%) | −0.30 | 0.02 * | 60 |
P. intermedia ratio (%) | 0.13 | 0.3 | 60 |
Shannon index | 0.003 | 0.98 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takuma, R.; Morozumi, T.; Yamamoto, Y.; Kobayashi, T.; Matsui, T.; Yoneda, M.; Kessoku, T.; Nogami, A.; Tamura, M.; Kamata, Y.; et al. Association between Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma and Periodontopathic Bacteria: A Cross-Sectional Pilot Study. Appl. Sci. 2023, 13, 3893. https://doi.org/10.3390/app13063893
Takuma R, Morozumi T, Yamamoto Y, Kobayashi T, Matsui T, Yoneda M, Kessoku T, Nogami A, Tamura M, Kamata Y, et al. Association between Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma and Periodontopathic Bacteria: A Cross-Sectional Pilot Study. Applied Sciences. 2023; 13(6):3893. https://doi.org/10.3390/app13063893
Chicago/Turabian StyleTakuma, Ryo, Toshiya Morozumi, Yuko Yamamoto, Takashi Kobayashi, Takaaki Matsui, Masato Yoneda, Takaomi Kessoku, Asako Nogami, Muneaki Tamura, Yohei Kamata, and et al. 2023. "Association between Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma and Periodontopathic Bacteria: A Cross-Sectional Pilot Study" Applied Sciences 13, no. 6: 3893. https://doi.org/10.3390/app13063893
APA StyleTakuma, R., Morozumi, T., Yamamoto, Y., Kobayashi, T., Matsui, T., Yoneda, M., Kessoku, T., Nogami, A., Tamura, M., Kamata, Y., Sugihara, S., Nomura, Y., To, M., Minabe, M., Mitsudo, K., Nakajima, A., & Komaki, M. (2023). Association between Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma and Periodontopathic Bacteria: A Cross-Sectional Pilot Study. Applied Sciences, 13(6), 3893. https://doi.org/10.3390/app13063893