Integrated Geotechnical Approach and GIS for Identification of Geological Resources Exploitable Quarries for Sustainable Development in Ifni Inlier and Lakhssas Plateau (Western Anti Atlas, Morocco)
Abstract
:1. Introduction
2. Study Area
- The Lakhssas plateau forms a rugged mountain barrier with an altitude of 1200 m between the Guelmim depression in the south (400 to 600 m) and the Tiznit plain in the north (100 to 400 m). The Lakhssas plateau is a complex anticline fold rising towards the west, overlooking the Ifni inlier with a slope of altitude of 300 to 500 m in the depressions [14]. The sedimentary cover of the border of the Ifni inlier, whose altitude varies between 400 and 700 m, is dominated by surface and underground karst phenomena.
- The Ifni inlier’s altitudes reach 200 m in the central zone and approach 1100 m in areas with volcanic rocks, especially rhyolitic. It is dug in a depression compared to the Lakhssas plateau. The central zone with flattened relief is dominated by Paleoproterozoic granites covered in turn by Paleozoic and post-Paleozoic rocks, which form visible ridges [15].
- The coastal platform lies along the west coast of the Ifni inlier with an altitude between 30 and 100 m. The sharp cliff dominates the coastal fringe of 50 m and below the cliff, along the coast, we recognize dead cliffs of the Middle Quaternary and Flandrian [15].
3. Materials and Methods
- Digital Elevation Model (DEM) with a 30 m resolution, published in September 2014, and downloaded from USGS Earth Explorer /SRTM 1 Arc-second Global (https://earthexplorer.usgs.gov/, accessed on 15 May 2022), is used to extract elevation [43].
- ArcGIS software was used to prepare the various maps used in this study.
4. Results and Discussion
4.1. Analysis Results and Geotechnical Classification
- The magmatic rocks have an almost similar wear resistance (MDE) and impact resistance (L.A) with a range of variation between 3% and 6% for both values (maximum and minimum) of the MDE and a difference of 4% for the minimum value of L.A. However, the maximum value of L.A, according to the authors, is almost double and even triple for some samples.
- The detrital and volcano-detrital rocks have almost similar wear resistance (MDE) and impact resistance (L.A) with a slight difference of 1.8% for both values (maximum and minimum) of the MDE and 3.7% for the minimum value of L.A. On the other hand, the maximum value of L.A according to the authors is almost double.
- The carbonate rocks are mainly between Classes A and E according to the French standard and Classes 1A and 6D for the Moroccan standards.
- The magmatic rocks are mainly divided between classes A and C for the French standard and classes 1A and 3C for the Moroccan standards.
- The detritic and volcano-detritic rocks fall between classes B and E according to the French standard and classes 2B and 6D for the Moroccan standards.
- There is a similarity between the two classifications, except that the denominations are particular at the level of the zones, and MDE is limited to 30% by Moroccan standards.
- Increase the number of samples to be analyzed over the entire surface of the deposit.
- Determine the geochemical and petrographic composition of the deposit facies.
- Carry out alkali-reaction tests for granites to verify the reactivity of these rocks with the binders.
4.2. Spatial Analysis
- This facilitates the identification of the classes for the two standards (French and Moroccan standards) for the appropriate area for any new quarries.
- The almost total similarity between the two classifications (French and Moroccan standards) is confirmed.
- The absence of classes 4 and 3 in the Lakhssas Plateau.
- The geotechnical class C or 3C, according to French and Moroccan standards, is the most dominant by an area of about 455.28Km2; this class is composed of a majority of carbonate rocks concentrated around the Ifni inlier (Figure 6a,b) and some Ignimbrite.
- Class 2, which is assigned to a mixture of several geotechnical classes, is the most dominant by an area equal to 1276.1 Km2, and according to Figure 7, this class is located at the plateau of Lakhssas and has an important presence at different parts around the Ifni inlier.
- Class 1, which is a very low geomechanical quality, has an area of about 422.29 km2, and according to Figure 7, it is always glued to class 2.
- Class 4, which is assigned to geotechnical class 1A according to the Moroccan standard or A according to the French standard, is composed mainly of magmatic rocks. This class is favorable in all fields of use, has an equal area of 339.456 km2, and is concentrated in the center of the study area with a slight presence in the north and south of the Ifni inlier.
- Class 3, which is assigned to a mixture of several geotechnical classes (Table 6), has an area of about 264.469 km2 and is located around class 4.
- Class 0, which is assigned to unclassified rocks, has an area of 315.54 km2. This class is mainly composed of quaternary rocks (biocalcarenite, alluvium, sand, etc.).
5. Conclusions
- Laboratory testing indicated that most of the geotechnical properties determined do not vary significantly from one rock to another.
- The classification of rocks according to the European and Moroccan standards has shown that all classes (A to E for the European standard and 1A to 6D for the Moroccan standard) are present in our study area.
- Carbonate, detrital and volcano-detrital rocks (excluding the conglomerate’s rocks) can be mined to produce high- to medium-quality aggregate thanks to their geotechnical classification (A to E for the European standard and 1A to 6D for the Moroccan standard) and their Los Angeles coefficient (L.A) and micro-Deval coefficient (MDE) values, which are less than 35%.
- Magmatic rocks can also be mined to produce high-quality aggregates thanks to their geotechnical classification (A to C for the European standard and 1A to 3C for the Moroccan standard) and their Los Angeles coefficient (L.A) and micro-Deval coefficient (MDE) values, which are less than 20%.
- The results of geotechnical analyses allowed us to consider basalts (L.A = 12 and MDE = 9) and rhyolites (L.A = 14 and MDE = 7) as excellent geotechnical materials due to their mechanical characteristics.
- The comparison of our results with previous work, carried out in other regions of the world, shows that the rocks in our study area have excellent geomechanical properties because, for the same type of rock, we have a difference in the value of the two mechanical parameters (MDE and LA) which reaches triple.
- Based on the spatial analysis, various suitable geotechnical sites in the study area are identified, classified as high (4), medium (3), low (2), very low (1) and others (0), and quantified.
- Categories 4 and 3 (high geotechnical quality rocks) are present only in the Ifni inlier, with an area of 339.456 km2 for category 4 and 264.469 km2 for category 3.
- The spatial analysis showed that geotechnical quality decreases in proportion to the distance from the center of the Ifni inlier towards the four directions (east, west, north and south).
- Spatial analysis showed that approximately 71.799% of the area of study area falls into the high, medium, and low categories and 28.201% falls into the very low and other zone categories.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iodice, S.; Garbarino, E.; Cerreta, M.; Tonini, D. Sustainability assessment of Construction and Demolition Waste management applied to an Italian case. Waste Manag. 2021, 128, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Grădinaru, C.M.; Muntean, R.; Șerbănoiu, A.A.; Ciocan, V.; Burlacu, A. Sustainable Development of Human Society in Terms of Natural Depleting Resources Preservation Using Natural Renewable Raw Materials in a Novel Ecological Material Production. Sustainability 2020, 12, 2651. [Google Scholar] [CrossRef] [Green Version]
- Talento, K.; Amado, M.; Kullberg, J.C. Quarries: From abandoned to renewed places. Land 2020, 9, 136. [Google Scholar] [CrossRef]
- Wani, M.H.; Javed, A. Evaluation of natural resource potential in semi-arid micro-watershed, eastern Rajasthan, using remote sensing and geographic information system: A case study. Arab. J. Geosci. 2013, 6, 1843–1854. [Google Scholar] [CrossRef]
- Escavy, J.I.; Herrero, M.J.; Lopez-Acevedo, F.; Trigos, L. The progressive distancing of aggregate quarries from the demand areas: Magnitude, causes, and impact on CO2 emissions in Madrid Region (1995–2018). Resour. Policy 2022, 75, 102506. [Google Scholar] [CrossRef]
- Khan, F.; Das, B.; Mishra, S.R.K.; Awasthy, M. A review on the Feasibility and Application of Geospatial Techniques in Geotechnical Engineering Field. Mater. Today Proc. 2022, 49, 311–319. [Google Scholar] [CrossRef]
- Hill, M.P. Aggregate opportunity modelling: Understanding our resource and planning for the future. In Proceedings of the AusIMM NZ Branch Conference 2018, Tauranga, New Zealand, 17–18 September 2018. [Google Scholar]
- Karakas, A.; Turner, K. Aggregate supply and demand modeling using GIS methods for the front range urban corridor, Colorado. Comput. Geosci. 2004, 30, 579–590. [Google Scholar] [CrossRef]
- Blachowski, J.; Buczyńska, A. Spatial and Multicriteria Analysis of Dimension Stones and Crushed Rocks Quarrying in the Context of Sustainable Regional Development: Case Study of Lower Silesia (Poland). Sustainability 2020, 12, 3022. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, S.W.; Kuznetsova, E. Resource management and a Best Available Concept for aggregate sustainability. Geol. Soc. Lond. Spec. Publ. 2016, 416, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Podimata, M.V.; Yannopoulos, P.C. A conceptual approach to model sand–gravel extraction from rivers based on a game theory perspective. J. Environ. Plan. Manag. 2016, 59, 120–141. [Google Scholar] [CrossRef]
- Mesrar, L.; Benamar, A.; Jabrane, R. Study of Taza’s Miocene marl applications in heavy clay industry. Bull. Eng. Geol. Environ. 2020, 79, 3019–3032. [Google Scholar] [CrossRef]
- Bulletin Officiel. Décret n°2.15.40 du 20 Février 2015, Fixant le Nombre des Régions, Leurs Noms, Leurs Chefs Lieux et les Préfectures et Provinces les Composant, 6340th ed.; Imprimerie Officielle: Rabat, Morocco, 2015; pp. 1008–1010.
- Oliva, P. Carte Géomorphologique des Plaines de l’Anti-Atlas Occidental au 1/100 000ème. Plaine de Goulimine, Feijas Occidentales et Massifs de Bordure; Royaume du Maroc, Ministère des Travaux Publics et Communications, Direction de l’Hydraulique: Rabat, Morocco, 1975.
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Sidi Ifni, Mémoire Explicatif. Notes Mém. Serv. Géol. Maroc 2015, 542. [Google Scholar]
- Gasquet, D.; Ennih, N.; Liégeois, J.P.; Soulaimani, A.; Michard, A. The Pan–African belt. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 116, pp. 33–64. [Google Scholar] [CrossRef]
- Choubert, G. L’accident majeur de l’Anti-Atlas. C.R. Acad. Sci. 1947, 224, 1172–1173. [Google Scholar]
- Leblanc, M. Ophiolites Précambriennes et Gîtes Arseniés de Cobalt: Bou Azzer (Maroc). Ph.D. Thesis, Paris VI University, Paris, France, 1975. [Google Scholar]
- Leblanc, M.; Lancelot, J.R. Interprétation géodynamique du domaine pan-africain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Can. J. Earth Sci. 1980, 17, 142–155. [Google Scholar] [CrossRef]
- Benziane, F. Géologie de la Boutonnière précambrienne d’Ifni (Anti-Atlas occidental); Editions du Service Géologique du Maroc: Rabat, Morocco, 1982.
- Thomas, R.J.; Fekkak, A.; Ennih, N.; Errami, E.; Loughlin, S.C.; Gresse, P.G.; Chevallier, L.P. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci. 2004, 39, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Mortaji, A.; Gasquet, D.; Ikenne, M.; Beraaouz, E.H.; Barbey, P.; Lahmam, M.; El Aouli, E.H. Les granitoïdes tardi-panafricains de l’Anti-Atlas sud-occidental (Maroc): Evolution d’un type magnésien à un type ferrifère. Exemple de la boutonnière d’Ifni. Estud. Geol. 2007, 63, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Moroccan Standard NM 10.1.008/2009; Concrete — Specifications, Performance, Production and conformity, 5740th ed. Bulletin Officiel: Rabat, Morocco, 2009; p. 942.
- Moroccan Standard NM 10.1.271/2008; Aggregates for hydraulic concrete—Definitions, specifications, conformity, 5606th ed. Bulletin Officiel: Rabat, Morocco, 2008; p. 120.
- Bulletin Officiel. Arrêté du Ministre de l’équipement n° 451-83 du 20 Safar 1403 (06/09/1982) Approuvant le Cahier des Prescriptions Communes Applicables aux Travaux Routiers Courants Exécutés pour le compte du ministère de l’équipement, 3675th ed.; Bulletin Officiel: Rabat, Morocco, 1983; p. 242.
- Moroccan Standard NM 10.1.146; Granulats —Mesure des masses spécifiques, de la porosité, du coefficient d’absorption et de la teneur en eau des gravillons et cailloux, 4312th ed. Bulletin Officiel: Rabat, Morocco, 1995; p. 398.
- Moroccan Standard NM EN 1097-2/2018; Tests for mechanical and physical properties of aggregates — Part 2: Methods for the determination of resistance to fragmentation, 6648th ed. Bulletin Officiel: Rabat, Morocco, 2018; p. 455.
- Moroccan Standard NM EN 1097-1/2017; Tests for mechanical and physical properties of aggregates — Part 1: Determination of the resistance to wear (micro-Deval), 6648th ed. Bulletin Officiel: Rabat, Morocco, 2018; p. 455.
- CEN I. 1097-6; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization: Brussels, Belgium, 2013.
- CEN I. 1097-2; Tests for Mechanical and Physical Properties of Aggregates. Determination of Loose Bulk Density and Voids. Comité Européen de Normalisation: Brussels, Belgium, 2010.
- Cen I. 1097-1; Tests for Mechanical and Physical Properties of Aggregates. Part 1: Determination of the Resistance to Wear (Micro-Deval). European Committee for Standardization: Brussels, Belgium, 2011.
- French Standard NF P18-545/2011; Aggregates — Defining elements, conformity and coding. Association Française de Normalisation (AFNOR): Saint-Denis, France, 2011.
- Ministry of Equipment and Transport of the Kingdom of Morocco. Note Circulaire n°214.22-50.5-288-340 Relative au Contrôle et Suivi des Travaux Routiers; Ministry of Equipment and Transport of the Kingdom of Morocco: Rabat, Morocco, 1998.
- Bayisa, R.; Kumar, R.T.; Seifu, K. Quarry Site Selection and Geotechnical Characterization of Ballast Aggregate for Ambo-Ijaji Railway Project in Central Ethiopia: An Integrated GIS and Geotechnical Approach. In Engineering Geology for Society and Territory—Volume 6; Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P., Delgado, C., Eds.; Springer International Publishing: Cham, Germany, 2015; pp. 329–335. [Google Scholar] [CrossRef]
- Barakat, A.; Ouargaf, Z.; Touhami, F. Identification of potential areas hosting aggregate resources using GIS method: A case study of Tadla-Azilal Region, Morocco. Environ. Earth Sci. 2016, 75, 774. [Google Scholar] [CrossRef]
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Mirleft. Notes Mém. Serv. Géol. Maroc 2015, 540. [Google Scholar]
- Schulte, B.; Benziane, F.; Yazidi, A.; Boger, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Arbaa Sahel. Notes Mém. Serv. Géol. Maroc 2015, 541. [Google Scholar]
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Sidi Ifni. Notes Mém. Serv. Géol. Maroc 2015, 542. [Google Scholar]
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Tlata al Akhçaç. Notes Mém. Serv. Géol. Maroc 2015, 543. [Google Scholar]
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Assaka. Notes Mém. Serv. Géol. Maroc 2015, 544. [Google Scholar]
- Yazidi, A.; Benziane, F.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Ait Sbouya. Notes Mém. Serv. Géol. Maroc 2015, 545. [Google Scholar]
- Benziane, F.; Yazidi, A.; Schulte, B.; Boger, S.; Stockhammer, S.; Lehmann, A. Carte géologique Maroc (1/50 000), feuille Tagant. Notes Mém. Serv. Géol. Maroc 2015, 546. [Google Scholar]
- Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 May 2022).
- Barakat, A.; Baghdadi, M.E.; Rais, J. A GIS-Based Inventory of Ornamental Stone and Aggregate Operations in the Beni-Mellal Region (Morocco). Arab. J. Sci. Eng. 2015, 40, 2021–2031. [Google Scholar] [CrossRef]
- Karakaş, A. Defining the suitability of new crushed rock aggregate source areas in the North of Kocaeli Province using GIS. Bull. Eng. Geol. Environ. 2014, 73, 1183–1197. [Google Scholar] [CrossRef]
- BRGM. Travaux Préparatoires au Schéma Régional des Carrières de Midi-Pyrénées: Etude sur les Ressources Régionales en Matériaux; Report No.: BRGM/RP-64918-FR; BRGM: Orléans, France, 2015.
- Cherifi, H.; Chaouni, A.A.; Fattah, G.; Jalouni, A.; Jabri, I.; El Asmi, H.; Raini, I. Physico-mechanical characterization of schists in Tazzeka complex (Taza Province, Eastern Morocco). Case Stud. Constr. Mater. 2021, 15, e00692. [Google Scholar] [CrossRef]
- Přikryl, R. Geomaterials as construction aggregates: A state-of-the-art. Bull. Eng. Geol. Environ. 2021, 80, 8831–8845. [Google Scholar] [CrossRef]
- Abdelhedi, M.; Abbes, C. Study of physical and mechanical properties of carbonate rocks and their applications on georesources exploration in Tunisia. Carbonates Evaporites 2021, 36, 35. [Google Scholar] [CrossRef]
- Cooley, L.A.; James, R.S. Micro-Deval Testing of Aggregates in the Southeast. Transp. Res. Rec. J. Transp. Res. Board 2003, 1837, 73–79. [Google Scholar] [CrossRef]
- Erichsen, E.; Ulvik, A.; Sævik, K. Mechanical Degradation of Aggregate by the Los Angeles-, the Micro-Deval- and the Nordic Test Methods. Rock Mech. Rock Eng. 2011, 44, 333–337. [Google Scholar] [CrossRef]
- Apaydın, Ö.F.; Yılmaz, M. Correlation of petrographic and chemical characteristics with strength and durability of basalts as railway aggregates determined by ballast fouling. Bull. Eng. Geol. Environ. 2021, 80, 4197–4205. [Google Scholar] [CrossRef]
- Johansson, E.; Miškovský, K.; Bergknut, M.; Šachlová, Š. Petrographic characteristics of intrusive rocks as an evaluation tool of their technical properties. Geol. Soc. Lond. Spec. Publ. 2016, 416, 217–227. [Google Scholar] [CrossRef]
- Hydzik-Wiśniewska, J.; Pękala, A. The evaluation of the physico-mechanical properties of selected Carpathian sandstones in terms of their use as a armour stone. Arch. Min. Sci. 2019, 64, 65–77. [Google Scholar] [CrossRef]
- Adomako, S.; Engelsen, C.J.; Thorstensen, R.T.; Barbieri, D.M. Review of the relationship between aggregates geology and Los Angeles and micro-Deval tests. Bull. Eng. Geol. Environ. 2021, 80, 1963–1980. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Valorization of Phosphate Mine Waste Rocks as Materials for Road Construction. Minerals 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Afolagboye, L.O.; Talabi, A.O.; Akinola, O.O. Evaluation of selected basement complex rocks from Ado-Ekiti, SW Nigeria, as source of road construction aggregates. Bull. Eng. Geol. Environ. 2016, 75, 853–865. [Google Scholar] [CrossRef]
- Adomako, S.; Engelsen, C.J.; Danner, T.; Thorstensen, R.T.; Barbieri, D.M. Recycled aggregates derived from excavation materials—Mechanical performance and identification of weak minerals. Bull. Eng. Geol. Environ. 2022, 81, 340. [Google Scholar] [CrossRef]
- Pang, L.; Wu, S.; Zhu, J.; Wan, L. Relationship between pretrographical and physical properties of aggregates. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010, 25, 678–681. [Google Scholar] [CrossRef]
- Benbaqqal, H.; Masrour, A.; Benyassine, E.M.; Erragragui, M. Approche du SIG pour la valorisation des carrières de matériaux de construction. Cas d’étude: Ex-Région septentrionale de Meknès-Tafilalet, Maroc [GIS approach for career development building materials Case study: Northern of former Region of Meknes-Tafilalet, Morocco]. J. Mater. Environ. Sci. 2016, 7, 2340–2351. [Google Scholar]
Sample | Lithology | Geological Facies | Stratigraphy Unit |
---|---|---|---|
SC-1 | Breccias and tuffs | Breccias and volcanic tuffs | NP3sv1 |
SC-2 | Limestone | Black limestone with calcite nodules rich in Archaeocyathus | €i2c |
SC-3 | Quartz | Ferriferous quartz | QzF |
SC-4 | Dolomite | Pink dolomites with sandy pasts, bedded, alternating with pink marls | €iTw2-3 |
SC-5 | Limestone | Dolomitic limestones, partly detrital | €i1a |
SC-6 | Dolomite | Blue dolomites | €iAd2b |
SC-7 | Limestone | Black limestone with calcite nodules rich in Archaeocyathus | €i2c |
SC-8 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-9 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-10 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-11 | Limestone | White dolomitic limestones, bedded | €i1b |
SC-12 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-13 | Diorite | Quartzitic diorite | NP3iδ |
SC-14 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-15 | Limestone | Blue-grey limestones with Archaeocyathids and siliceous beds | €i2a |
SC-16 | Limestone | Whitish nodulous limestones with Archaeocyathids and whitish pelitic intercalations | €i2b |
SC-17 | Limestone | Black limestone with calcite nodules rich in Archaeocyathus | €i2c |
SC-18 | Conglomerates | Basic conglomerates | €iAd1c |
SC-19 | Sandstone | Quartzitic sandstone complex | NP2iq1 |
SC-20 | Limestone | Black limestone with calcite nodules rich in Archaeocyathus | €i2c |
SC-21 | Conglomerates and sandstones | Conglomerates and green sandstones with volcanic elements and acidic volcanic levels (rhyolites and dacites) | NP3ic |
SC-22 | Rhyolitic ignimbrites | Green rhyolitic ignimbrites | NP3ip2 |
SC-23 | Rhyolitic ignimbrites | Ignimbrites and violet rhyolitic tuffs | NP3sp1 |
SC-24 | Granodiorite | Red granitoid | NP3iγδ2 |
SC-25 | Granite | Biotite monzogranite | PP3γ3 |
SC-26 | Limestone | Gray limestone | €i2a |
SC-27 | Granite | Fine pink granite, compact (Leucocratic granite) | NP3iγ1 |
SC-28 | rhyolite | pink rhyolite | NP3sv1 |
SC-29 | Granodiorite | Coarse-grained granodiorite (Biotite granodiorite) | NP3iγδ3 |
SC-30 | Granodiorite | Coarse-grained granite (Porphyroid granite) | NP3iγδ4 |
SC-31 | Granite | Fine leucocratic granite | NP3iγ2 |
SC-32 | Granite | Two-Micas granite (Muscovite granite) | PP3γ1 |
SC-33 | Granodiorite | Biotite granite and dolerite enclave | NP3iγδ1 |
SC-34 | Limestone, foliation | Metamorphic limestone with black veins | €i2a |
SC-35 | Limestone | Pink limestone well crystallized | €i2a |
SC-36 | Limestone | Black limestone, subhorizontal and metamorphic | €i2a |
SC-37 | Limestone | Purplish limestone | €i2d |
SC-38 | Limestone | Green limestone | €i2d |
SC-39 | Basalt | Olivine basalt | NP3sβ |
SC-40 | Dolomite | Pink dolomite | €iAd1 |
SC-41 | Limestone | Black limestone with calcite nodules rich in Archaeocyathus | €i2c |
SC-42 | Granophyre and microgranite | Granophyre and microgranite dyke | NP3µy |
Parameter | Moroccan Standard | European Standard |
---|---|---|
Density (t/m3) | NM 10.1.146 | EN 1097-6 |
Porosity (%) | ||
Absorption (%) | ||
Los Angeles (L.A) (%) | NM EN 1097-2/2018 | EN 1097-2/2010 |
Micro-Deval MDE (%) | NM EN 1097-1/2017 | EN 1097-1/2011 |
Factor | Suitability | Sub-Factors Geotechnical Classification Code According to | Classification Scores | |
---|---|---|---|---|
French Classification | Moroccan Classification | |||
Geotechnics | High | (A) | (1A) | 4 |
Medium | (B)-(A and B)- (A and C) | (2B)-(1A and 2B) -(1A and 3C) | 3 | |
Low | (C)-(B and C) - (A, B, C, D and E) | (3C)-(2B and 3C)- (1A,2B,3C,4C,5D and 6D) | 2 | |
Very Low | (D)-(E)-(F)- (C and D) | (4C)-(5D)-(6D) - (3C and 6D) | 1 | |
Other | Unclassified rock | 0 |
Sample | Density (t/m3) | Porosity (%) | Absorption (%) | Los Angeles (%) | Micro-Deval (%) | French Classification Code | Moroccan Classification Code |
---|---|---|---|---|---|---|---|
SC-1 | 2.52 | 0.9 | 0.2 | 15 | 12 | B | 2B |
SC-2 | 2.6 | 0.3 | 0.1 | 21 | 19 | C | 3C |
SC-3 | 2.7 | 0.2 | 0.11 | 13 | 9 | A | 1A |
SC-4 | 2.66 | 0.39 | 0.15 | 23 | 21 | C | 3C |
SC-5 | 2.66 | 0.34 | 0.13 | 24 | 20 | C | 3C |
SC-6 | 2.64 | 0.32 | 0.16 | 20 | 16 | C | 3C |
SC-7 | 2.68 | 0.51 | 0.19 | 26 | 27 | D | 5D |
SC-8 | 2.68 | 0.42 | 0.16 | 32 | 28 | E | 6D |
SC-9 | 2.66 | 1.55 | 0.57 | 35 | 30 | E | 6D |
SC-10 | 2.65 | 1.05 | 0.4 | 25 | 17 | C | 3C |
SC-11 | 2.68 | 0.63 | 0.24 | 25 | 27 | D | 5D |
SC-12 | 2.68 | 1.26 | 0.47 | 21 | 30 | D | 5D |
SC-13 | 2.69 | 0.32 | 0.12 | 19 | 14 | B | 2B |
SC-14 | 2.6 | 1.82 | 0.7 | 26 | 30 | E | 5D |
SC-15 | 2.63 | 0.8 | 0.3 | 21 | 19 | C | 3C |
SC-16 | 2.7 | 1.26 | 0.3 | 18 | 30 | D | 5D |
SC-17 | 2.69 | 0.35 | 0.16 | 23 | 21 | C | 3C |
SC-18 | 2.5 | 1.1 | 0.8 | 35 | 30 | E | 6D |
SC-19 | 2.69 | 0.47 | 0.15 | 25 | 21 | D | 4C |
SC-20 | 2.68 | 0.4 | 0.16 | 26 | 25 | D | 5D |
SC-21 | 2.62 | 0.33 | 0.18 | 25 | 23 | D | 4C |
SC-22 | 2.58 | 1 | 0.6 | 19 | 15 | B | 2B |
SC-23 | 2.64 | 1.61 | 0.61 | 20 | 17 | C | 3C |
SC-24 | 2.67 | 1.15 | 0.53 | 18 | 6 | A | 1A |
SC-25 | 2.7 | 3.1 | 1.2 | 17 | 7 | A | 1A |
SC-26 | 2.69 | 2.3 | 0.74 | 25 | 16 | C | 3C |
SC-27 | 2.8 | 1.5 | 0.58 | 19 | 5 | A | 1A |
SC-28 | 2.6 | 1.2 | 0.42 | 14 | 7 | A | 1A |
SC-29 | 2.75 | 1.54 | 0.58 | 16 | 6 | A | 1A |
SC-30 | 2.65 | 1.59 | 0.62 | 18 | 6 | A | 1A |
SC-31 | 2.62 | 3.1 | 1.2 | 19 | 5 | A | 1A |
SC-32 | 2.66 | 1.83 | 0.69 | 15 | 8 | A | 1A |
SC-33 | 2.59 | 2.7 | 1.16 | 30 | 11 | C | 3C |
SC-34 | 2.74 | 0.74 | 0.25 | 19 | 12 | B | 2B |
SC-35 | 2.73 | 1.85 | 0.65 | 12 | 8 | A | 1A |
SC-36 | 2.69 | 1.46 | 0.58 | 25 | 21 | D | 4C |
SC-37 | 2.69 | 1.55 | 0.4 | 13 | 6 | A | 1A |
SC-38 | 2.65 | 2.8 | 1 | 12 | 8 | A | 1A |
SC-39 | 2.75 | 0.33 | 0.2 | 12 | 9 | A | 1A |
SC-40 | 2.67 | 3.5 | 0.9 | 16 | 12 | B | 2B |
SC-41 | 2.65 | 1.8 | 0.46 | 22 | 19 | C | 3C |
SC-42 | 2.63 | 1 | 0.8 | 18 | 14 | B | 2B |
Lithology | Reference | Rock Type | Los Angeles (%) | Micro-Deval (%) | Number of Samples | ||
---|---|---|---|---|---|---|---|
Min Value | Max Value | Min Value | Max Value | ||||
Limestone | [48] | Carbonate rock | 20.50 | 41.20 | - | - | 11 |
[49] | 21 | 49 | 11 | 60 | 17 | ||
[50] | 13 | 45 | 7.8 | 39.3 | 21 | ||
[51] | 18 | 51 | 22 | 45 | 3 | ||
Dolomites | [49] | 18 | 31 | 9 | 52 | 9 | |
Andesite | [48] | Magmatic rocks | 15.40 | 18.90 | - | - | 10 |
Basalt | [52] | 8 | 14 | 5 | 13 | 9 | |
Granite | [53] | 20 | 39 | 4 | 13 | 6 | |
[51] | 28 | 35 | 11 | 11 | 2 | ||
[50] | 15 | 66 | 2 | 22.9 | 27 | ||
Meta-granite | [53] | 21 | 30 | 6 | 9 | 2 | |
Quartz | [53] | 17 | 17 | 2 | 2 | 1 | |
Granodiorite | [53] | 21 | 23 | 5 | 6 | 2 | |
[51] | 31 | 31 | 9 | 9 | 1 | ||
Meta-granodiorite | [53] | 24 | 37 | 9 | 18 | 3 | |
Sandstone | [54] | Detritic rock | 17.7 | 51.7 | 22.1 | 24 | 27 |
[50] | 24 | 54 | 11.2 | 21.8 | 4 |
Classification Scores | Geotechnical Classification Code According to French Classification | Geotechnical Classification Code According to Moroccan Classification | Area (km2) |
---|---|---|---|
4 | (A) | (1A) | 339.456 |
3 | (B)-(A and B)- (A and C) | (2B)-(1A and 2B) -(1A and 3C) | 264.469 |
2 | (C)-(B and C) - (A, B, C, D and E) | (3C)-(2B and 3C)- (1A,2B,3C,4C,5D and 6D) | 1276.1 |
1 | (D)-(E)-(F)- (C and D) | (4C)-(5D)-(6D) - (3C and 6D) | 422.629 |
0 | Unclassified rock | 315.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebbab, M.M.; El Ouahidi, A.; Ousbih, M.; Ouboulahcen, S.; Abdelrahman, K.; Abioui, M. Integrated Geotechnical Approach and GIS for Identification of Geological Resources Exploitable Quarries for Sustainable Development in Ifni Inlier and Lakhssas Plateau (Western Anti Atlas, Morocco). Appl. Sci. 2023, 13, 3932. https://doi.org/10.3390/app13063932
Sebbab MM, El Ouahidi A, Ousbih M, Ouboulahcen S, Abdelrahman K, Abioui M. Integrated Geotechnical Approach and GIS for Identification of Geological Resources Exploitable Quarries for Sustainable Development in Ifni Inlier and Lakhssas Plateau (Western Anti Atlas, Morocco). Applied Sciences. 2023; 13(6):3932. https://doi.org/10.3390/app13063932
Chicago/Turabian StyleSebbab, Mohamed Mahmoud, Abdelhadi El Ouahidi, Mehdi Ousbih, Seddik Ouboulahcen, Kamal Abdelrahman, and Mohamed Abioui. 2023. "Integrated Geotechnical Approach and GIS for Identification of Geological Resources Exploitable Quarries for Sustainable Development in Ifni Inlier and Lakhssas Plateau (Western Anti Atlas, Morocco)" Applied Sciences 13, no. 6: 3932. https://doi.org/10.3390/app13063932
APA StyleSebbab, M. M., El Ouahidi, A., Ousbih, M., Ouboulahcen, S., Abdelrahman, K., & Abioui, M. (2023). Integrated Geotechnical Approach and GIS for Identification of Geological Resources Exploitable Quarries for Sustainable Development in Ifni Inlier and Lakhssas Plateau (Western Anti Atlas, Morocco). Applied Sciences, 13(6), 3932. https://doi.org/10.3390/app13063932