Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Inoculum Preparation
2.2. Preparation of the Nanoparticles Suspensions and Determining the Minimum Inhibitory Concentration (MIC) of NiO NPs
2.3. Assessment of Nickel Oxide Nanoparticles Cytotoxicity
2.4. Laboratory Manufacturing of Domiati Cheese
2.5. Microbiological and Physico-Chemical Analysis of Domiati Cheese
2.6. Detection of Staphylococcal Enterotoxin A (SEA) Using ELISA Technique
2.7. Data Processing and Models’ Development
- (i)
- The log-linear model was used as follows:
- (ii)
- The Weibull model was as follows:
2.8. Statistical Analysis
3. Results
3.1. Assessment of Nickel Oxide Nanoparticles Cytotoxicity
3.2. Effect of Yoghourt Starter Culture and NiO NPs on S. aureus during Manufacture and Storage of Domiati Cheese
3.3. Evaluation of SEA Using RIDASCREENÒ SET A, B, C, D, E ELISA Kit
3.4. Physico-CHEMICAL ANALYSIS of Domiati Cheese
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Hamad, M.N. Comparative study between traditional Domiati cheese and Recombined Feta cheese. Ind. J. Dairy Sci. 2015, 68, 442–452. [Google Scholar] [CrossRef]
- Arqués, J.L.; Rodríguez, E.; Langa, S.; Landete, J.M.; Medina, M. Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Res. Int. 2015, 2015, 584183. [Google Scholar] [CrossRef] [Green Version]
- Al-Ashmawy, M.A.; Sallam, K.I.; Abd-Elghany, S.M.; Elhadidy, M.; Tamura, T. Prevalence, Molecular Characterization, and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Isolated from Milk and Dairy Products. Foodborne Pathog. Dis. 2016, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; ElMakarem, H.; Amer, A. Safety and Public Health Hazards Associated with Egyptian Soft Cheese Consumption. Alex. J. Vet. Sci. 2017, 54, 135. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Erdoğan, A.F.; Turgut, T.; Adigüzel, M.C. A review on the presence of Staphylococcus aureus in cheese. Turk. J. Nat. Sci. 2017, 6, 100–105. [Google Scholar]
- Carfora, V.; Giacinti, G.; Sagrafoli, D.; Marri, N.; Giangolini, G.; Alba, P.; Feltrin, F.; Sorbara, L.; Amoruso, R.; Caprioli, A.; et al. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in dairy sheep and in-contact humans: An intra-farm study. J. Dairy Sci. 2016, 99, 4251–4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoud, W.; Vogensen, F.K.; Lillevang, S.; Abu Al-Soud, W.; Sørensen, S.J.; Jakobsen, M. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int. J. Food Microbiol. 2012, 153, 192–202. [Google Scholar] [CrossRef]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Commission, E. Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2007, 322, 12–29. [Google Scholar]
- Egyptian Standards. Milk and Dairy Products, Part 1: Raw Milk, Egyptian Organization for Standardization and Quality Control; Directive No 154-1, Arab Republic of Egypt; Egyptian Organization for Standardization and Quality (EOS): Cairo, Egypt, 2005. [Google Scholar]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Vernozy-Rozand, C.; Meyrand, A.; Mazuy, C.; Delignette-Muller, M.L.; Jaubert, G.; Perrin, G.; Lapeyre, C.; Richard, Y. Behaviour and enterotoxin production by Staphylococcus aureus during the manufacture and ripening of raw goats’ milk lactic cheeses. J. Dairy Res. 1998, 65, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, L.; Sancak, Y.C. Growth abilities and enterotoxin production of Staphylococcus aureus strains in herby cheese. Bull. Vet. Inst. Pulawy. 2007, 51, 401–406. [Google Scholar]
- Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K. Application of Nanotechnology in Food Science: Perception and Overview. Front. Microbiol. 2017, 8, 1501. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Kim, C.J.; Kim, N.; Kim, C.-t.; Park, B. Some cases in applications of nanotechnology to food and agricultural systems. BioChip J. 2009, 2, 183–185. [Google Scholar]
- Huang, Q.; Yu, H.; Ru, Q. Bioavailability and Delivery of Nutraceuticals Using Nanotechnology. J. Food Sci. 2010, 75, R50–R57. [Google Scholar] [CrossRef]
- Amini, S.M. Safety of Nanotechnology in Food Industries. Electron. Physician 2014, 6, 964–968. [Google Scholar] [CrossRef]
- Wang, H.; Du, L.J.; Song, Z.M.; Chen, X.X. Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Nanomedicine 2013, 8, 2007–2025. [Google Scholar] [CrossRef]
- Higashisaka, K.; Yoshioka, Y.; Tsutsumi, Y. Applications and safety of nanomaterials used in the food industry. Food Saf. 2015, 3, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, B.A.; Jonaitis, T.S.; Card, J.W. A brief review of the occurrence, use, and safety of food-related nanomaterials. J. Food Sci. 2011, 76, R126–R133. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Yeh, Y.C.; Yang, C.Y.; Chen, C.L.; Chen, G.F.; Chen, C.C.; Wu, Y.C. Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124, 3508–3509. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y. Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. Analyst 2006, 131, 394–401. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Niu, J.; Chen, Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 2013, 29, 4647–4651. [Google Scholar] [CrossRef]
- Haghshenas, L.; Babaoğlu, A.R. Evaluation of the effect of Gold and Nickel nanoparticles on Escherichia coli and Staphylococcus aurous bacteria in milk. J. Micro Nano Biomed. 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Saleem, S.; Ahmed, B.; Khan, M.S.; Al-Shaeri, M.; Musarrat, J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 2017, 111, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Karthikeyan, S.; Saravanan, P.; Jayamoorthy, K. Comparison of antibacterial and antifungal activities of 5-amino-2-mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int. J. Mod. Sci. 2016, 2, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Thabrew, M.I.; Hughes, R.D.; McFarlane, I.G. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J. Pharm. Pharmacol. 1997, 49, 1132–1135. [Google Scholar] [CrossRef]
- Fahmi, A.H.; Sharara, H.A. Studies on Egyptian Damietta cheese. J. Dairy Res. 1950, 17, 312–318. [Google Scholar] [CrossRef]
- Atherton, H.V.; Newlander, J.A. Chemistry and Testing of Dairy Products; AVI Publishing Co. Inc.: Westport, CT, USA, 1977. [Google Scholar]
- Wilster, G.H.; Price, W.V.; Morris, A.J.; Goss, E.F.; Sanders, G.P. Determination of Fat, Moisture, and Salt in Soft Cheese. J. Dairy Sci. 1940, 23, 197–200. [Google Scholar] [CrossRef]
- Mehta, M. Modelling the Grade Value of Cheese. J. Food Dairy Technol. 2014, 2014, 2347–2359. [Google Scholar]
- Rahimi, F.; Bouzari, M.; Katouli, M.; Pourshafie, M.R. Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch Virol. 2012, 157, 1807–1811. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T. A Dynamic Approach to Predicting Bacterial-Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. [Google Scholar] [CrossRef]
- Van Boekel, M.A. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 2002, 74, 139–159. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Herremans, C.H.; Van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 2000, 59, 185–209. [Google Scholar] [CrossRef]
- Hennekinne, J.-A.; De Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Normanno, G.; La Salandra, G.; Dambrosio, A.; Quaglia, N.C.; Corrente, M.; Parisi, A.; Santagada, G.; Firinu, A.; Crisetti, E.; Celano, G.V. Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int. J. Food Microbiol. 2007, 115, 290–296. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; AbuNaser, R.A.; Olaimat, A.N.; Ayyash, M.; Al-Holy, M.A.; Kadora, K.M.; Holley, R.A. Factors affecting the viability of Staphylococcus aureus and production of enterotoxin during processing and storage of white-brined cheese. J. Dairy Sci. 2020, 103, 6869–6881. [Google Scholar] [CrossRef]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horie, M.; Fukui, H.; Nishio, K.; Endoh, S.; Kato, H.; Fujita, K.; Miyauchi, A.; Nakamura, A.; Shichiri, M.; Ishida, N.; et al. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J. Occup. Health 2011, 53, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, Y.; Oyabu, T.; Ogami, A.; Myojo, T.; Kuroda, E.; Hirohashi, M.; Shimada, M.; Lenggoro, W.; Okuyama, K.; Tanaka, I. Investigation of gene expression of MMP-2 and TIMP-2 mRNA in rat lung in inhaled nickel oxide and titanium dioxide nanoparticles. Ind. Health 2011, 49, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Haritha, V.; Gowri, S.; Janarthanan, B.; Faiyazuddin, M.; Karthikeyan, C.; Sharmila, S. Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorg. Chem. Commun. 2022, 144, 109930. [Google Scholar] [CrossRef]
- Behera, N.; Arakha, M.; Priyadarshinee, M.; Pattanayak, B.S.; Soren, S.; Jha, S.; Mallick, B.C. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv. 2019, 9, 24888–24894. [Google Scholar] [CrossRef] [Green Version]
- Geurts, T.J.; Walstra, P.; Mulder, H. Transport of salt and water during salting of cheese. 2. Quantities of salt taken up and of moisture lost. Neth. Milk Dairy J. 1980, 34, 229–254. [Google Scholar]
Treatments | Estimated Kinetic Parameters | |||||
---|---|---|---|---|---|---|
LT 1 (d) | µmax (log CFU/d) 2 | N0 (log CFU/g) 3 | MPD (log CFU/g) 4 | SE of Fit | R2 | |
Control | 6.343 ± 0.822 | 0.137 ± 0.015 A | 7.247 ± 0.037 A | 8.857 ± 0.031 B | 0.052 | 0.996 |
Yoghourt starter culture | - 6 | 0.099 ± 0.016 A | 7.084 ± 0.199 A | 9.979 ± 0.368 C | 0.306 | 0.934 |
NiO NPs 5 | - | 0.089 ± 0.034 A | 7.269 ± 0.135 A | 8.180 ± 0.127 A | 0.176 | 0.850 |
Treatments | Type of Model | Estimated Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Δ | p | MSE | R2 | R2 Adjusted | N0 (log CFU/g) | kmax (log CFU/d) | MSE | R2 | R2 Adjusted | ||
Control | Weibull | 29.71 ± 2.31 A | 7.70 ± 3.51 A | 0.20 | 0.92 | 0.89 | - | - | 0.19 | 0.93 | 0.90 |
Yoghurt starter culture | Weibull | 24.05 ± 4.17 B | 3.66 ± 1.66 B | 0.44 | 0.88 | 0.82 | - | - | 0.38 | 0.89 | 0.84 |
NiO NPs 1 | Linear | - 2 | - | - | - | - | 5.65 ± 0.19 | 0.31 ± 0.06 | 0.08 | 0.94 | 0.91 |
Time (d) | Control | Yoghourt Starter | NiO NPs 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Moisture% | TS% 1 | NaCl% | Moisture% | TS% | NaCl% | Moisture% | TS% | NaCl% | |
0 | 58.0 ± 2.8 Aa | 42.0 ± 2.8 Aa | 1.9 ± 0.1 Ba | 59.0 ± 2.8 Aa | 41.0 ± 1.4 Aa | 2.4 ± 0.1 Aa | 46.2 ± 1.7 Ba | 35.8 ± 1.7 Ba | 2.5 ± 0.0 Aa |
7 | 55.3 ± 3.2 Aa | 44.7 ± 3.2 Aa | 2.4 ± 0.1 Bb | 54.5 ± 0.0 Ab | 45.5 ± 0.0 Ab | 2.9 ± 0.1 Ab | 59.8 ± 5.9 Ab | 40.2 ± 5.9 Bab | 3.0 ± 0.4 ABab |
14 | 52.4 ± 2.8 Aab | 47.6 ± 2.8 Aa | 2.8 ± 0.1 Ac | 52.8 ± 2.8 Ab | 47.2 ± 2.8 Ab | 3.0 ± 0.1 Ab | 54.8 ± 2.6 Ab | 45.2 ± 2.6 Ab | 2.9 ± 0.6 Aab |
21 | 51.5 ± 1.4 Ab | 48.5 ± 1.4 Aab | 2.9 ± 0.1 Ac | 51.4 ± 1.6 Ab | 48.6 ± 1.6 Ab | 3.3 ± 0.3 Ab | 50.9 ± 0.1 Ab | 49.1 ± 0.1 Ab | 3.2 ± 0.1 Ab |
28 | 49.2 ± 0.0 Ab | 50.8 ± 0.0 Ab | 3.2 ± 0.1 Ac | 45.8 ± 1.6 Ac | 54.2 ± 1.6 Bc | 3.9 ± 0.4 Abc | - 3 | - | - |
35 | 44.7 ± 0.4 Ac | 55.3 ± 0.4 Ac | 3.4 ± 0.3 Ac | 44.5 ± 3.1 Ac | 55.5 ± 3.1 Ac | 4.5 ± 0.3 Bc | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.A.-H.; Maharik, N.; Valero, A.; Elsherif, W.; Kamal, S.M. Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese. Appl. Sci. 2023, 13, 3935. https://doi.org/10.3390/app13063935
Ahmed AA-H, Maharik N, Valero A, Elsherif W, Kamal SM. Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese. Applied Sciences. 2023; 13(6):3935. https://doi.org/10.3390/app13063935
Chicago/Turabian StyleAhmed, Ahmed A.-H., Nagah Maharik, Antonio Valero, Walaa Elsherif, and Sahar Mahmoud Kamal. 2023. "Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese" Applied Sciences 13, no. 6: 3935. https://doi.org/10.3390/app13063935
APA StyleAhmed, A. A. -H., Maharik, N., Valero, A., Elsherif, W., & Kamal, S. M. (2023). Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese. Applied Sciences, 13(6), 3935. https://doi.org/10.3390/app13063935