An InSAR Interference Fringe-Matching Algorithm Based on Mountain Branch Points
Abstract
:1. Introduction
- An analysis is conducted of the correspondence between the interference fringes and the DEM to design an algorithm for the extraction of mountain range lines from the interference fringes;
- The use of mountain range branch points is proposed as a keypoint for feature matching, which is a new idea for image matching of topographic data such as interference fringes and DEM;
- Improved matching of interference fringes is achieved by designing more specific feature descriptors for mountain branch points.
2. Methods
2.1. Algorithm Flow
2.2. Interference Fringe Characterization
2.3. Extraction of Mountain Line
2.4. Extraction of Mountain Branch Points
2.5. Description of Mountain Branch Points
3. Results
3.1. Experimental Data
3.2. Position Error Experiment and Attitude Error Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savage, P.G. Strapdown inertial navigation integration algorithm design part 2: Velocity and position algorithms. J. Guid. Control Dyn. 1998, 21, 208–221. [Google Scholar] [CrossRef]
- Zhou, Y.; Wan, J.; Li, Z.; Song, Z. GPS/INS integrated navigation with BP neural network and Kalman filter. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 2515–2520. [Google Scholar] [CrossRef]
- Sun, B.; Yan, W.-D.; Ma, X.-L.; Bian, H.; Ni, W.-P.; Zheng, G. A new scene matching algorithm during optical aided navigation of aircraft. In Proceedings of the 2012 International Conference on Image Analysis and Signal Processing, Agadir, Morocco, 28–30 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Greco, M.; Pinelli, G.; Kulpa, K.; Samczynski, P.; Querry, B.; Querry, S. The study on SAR images exploitation for air platform navigation purposes. In Proceedings of the 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 7–9 September 2011; pp. 347–352. [Google Scholar]
- Kedong, W.; Yang, Y. Influence of application conditions on terrain-aided navigation. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 391–396. [Google Scholar] [CrossRef]
- Buck, T.; Wilmot, J.; Cook, M. A High G, MEMS Based, Deeply Integrated, INS/GPS, Guidance, Navigation and Control Flight Management Unit. In Proceedings of the IEEE/ION PLANS 2006, San Diego, CA, USA, 25–27 April 2006; pp. 772–794. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Kulpa, K.; Pinelli, G.; Samczynski, P. SAR and InSAR georeferencing algorithms for inertial navigation systems. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 3–10 June 2011; p. 80081O. [Google Scholar] [CrossRef]
- Nitti, D.O.; Bovenga, F.; Morea, A.; Rana, F.; Guerriero, L.; Greco, M.; Pinelli, G. On the use of SAR interferometry to aid navigation of UAV. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions; SPIE: Bellingham, WA, USA, 2012; Volume 8532. [Google Scholar] [CrossRef]
- Shuai, J.; Maosheng, X.; Bingnan, W.; Xikai, F.; Yinwei, L.; Weiran, S.; Yu, Y. The method of InSAR/INS integrated navigation. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Sun, G.; Dong, J.; Yang, A.; Wu, J. Extraction of Interference Fringe Information Based on Self-adaptive Restoration and Clustering via Distance Histogram. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 10342–10346. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, B.N.; Xiang, M.S.; Fu, X.K.; Li, Y.W. An Inversion Method of the Attitude for InSAR/INS Integrated Navigation. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2018, 46, 513–519. [Google Scholar]
- Lowe, D. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 430–443. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; pp. 778–792. [Google Scholar]
- Giveki, D.; Soltanshahi, M.A.; Montazer, G.A. A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. Optik 2017, 131, 242–254. [Google Scholar] [CrossRef]
- Malkov, Y.A.; Yashunin, D.A. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 824–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raveendra, K.; Vinothkanna, R. Hybrid ant colony optimization model for image retrieval using scale-invariant feature transform local descriptor. Comput. Electr. Eng. 2019, 74, 281–291. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. Lift: Learned invariant feature transform. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 467–483. [Google Scholar]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superpoint: Self-supervised interest point detection and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 224–236. [Google Scholar]
- Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4938–4947. [Google Scholar]
- Kampes, B.; Usai, S. Doris: The delft object-oriented radar interferometric software. In Proceedings of the of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999; Volume 1620. [Google Scholar]
- Werner, C.; Wegmueller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 December 2000; Volume 1620, p. 1620. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Stevens, D.; Cumming, I.; Gray, A. Motion compensation for airborne interferometric SAR. In Proceedings of the of IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 1967–1970. [Google Scholar] [CrossRef]
- Ziguan, W.; Zhang, G.; Chengshu, W.; Xing, S. Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sens. 2022, 14, 3529. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information-system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Jiang, W.; Xi, D.; Deng, X.; Huang, L.; Ying, S. Extraction of Ridge Lines from Grid DEMs with the Steepest Ascent Method Based on Constrained Direction. In Proceedings of the Advances in Cartography and GIScience, Washington, DC, USA, 2–7 July 2017; Peterson, M.P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 375–387. [Google Scholar]
- Koka, S.; Anada, K.; Nakayama, Y.; Sugita, K.; Yaku, T.; Yokoyama, R. A Comparison of Ridge Detection Methods for DEM Data. In Proceedings of the 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Kyoto, Japan, 8–10 August 2012; pp. 513–517. [Google Scholar] [CrossRef]
- Chen, S.C.; Chiu, C.C. Texture Construction Edge Detection Algorithm. Appl. Sci. 2019, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Damon, J.N. Properties of Ridges and Cores for Two-Dimensional Images. J. Math. Imaging Vis. 2004, 10, 163–174. [Google Scholar]
- Liu, J.; White, J.M.; Summers, R.M. Automated detection of blob structures by Hessian analysis and object scale. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 841–844. [Google Scholar] [CrossRef]
- Kimmel, R.; Shaked, D.; Kiryati, N.; Bruckstein, A.M. Skeletonization via Distance Maps and Level Sets. Comput. Vis. Image Underst. 1995, 62, 382–391. [Google Scholar] [CrossRef]
- Golland, P.; Eric, W.; Grimson, L. Fixed topology skeletons. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head, SC, USA, 13–15 June 2000; Volume 1, pp. 10–17. [Google Scholar] [CrossRef]
- Abeysinghe, S.S.; Baker, M.; Chiu, W.; Ju, T. Segmentation-free skeletonization of grayscale volumes for shape understanding. In Proceedings of the 2008 IEEE International Conference on Shape Modeling and Applications, Stony Brook, NY, USA, 4–6 June 2008; pp. 63–71. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Creath, K. V phase-measurement interferometry techniques. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1988; Volume 26, pp. 349–393. [Google Scholar]
- Jiang, S.; Sun, X.; Xiang, M.; Wang, B.; Fu, X.; Hu, X.; Qian, Q. Algorithm for the generation of airborne interferometric phase based on DEM. In Foreign Electronic Measurement Technology; CAOD: Windsor, ON, Canada, 2018. [Google Scholar]
/(cm) | H/(m) | B/(m) | /() |
---|---|---|---|
2.075 | 1500 | 0.5 | 0 |
/(cm) | H/(m) | B/(m) | /() | /(m) | /(m) | /(m) |
---|---|---|---|---|---|---|
3.125 | 4876.300 | 1.048 | 45.601 | 3618.380 | 0.976 | 0.681 |
Precision | Recall | Inliers | F1-Score | |
---|---|---|---|---|
SIFT | 0.018 | 0.019 | 7.878 | 0.016 |
SURF | 0.019 | 0.016 | 15.780 | 0.012 |
Proposed | 0.103 | 0.128 | 72.024 | 0.144 |
Precision | Recall | Inliers | F1-Score | |
---|---|---|---|---|
SIFT | 0.019 | 0.019 | 8.246 | 0.017 |
SURF | 0.008 | 0.015 | 10.852 | 0.009 |
Proposed | 0.093 | 0.112 | 61.655 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Liu, N.; Wang, B.; Xiang, M.; Shi, R.; Li, L.; Wang, Y. An InSAR Interference Fringe-Matching Algorithm Based on Mountain Branch Points. Appl. Sci. 2023, 13, 3941. https://doi.org/10.3390/app13063941
Sun G, Liu N, Wang B, Xiang M, Shi R, Li L, Wang Y. An InSAR Interference Fringe-Matching Algorithm Based on Mountain Branch Points. Applied Sciences. 2023; 13(6):3941. https://doi.org/10.3390/app13063941
Chicago/Turabian StyleSun, Gen, Ning Liu, Bingnan Wang, Maosheng Xiang, Ruihua Shi, Lanyu Li, and Yachao Wang. 2023. "An InSAR Interference Fringe-Matching Algorithm Based on Mountain Branch Points" Applied Sciences 13, no. 6: 3941. https://doi.org/10.3390/app13063941
APA StyleSun, G., Liu, N., Wang, B., Xiang, M., Shi, R., Li, L., & Wang, Y. (2023). An InSAR Interference Fringe-Matching Algorithm Based on Mountain Branch Points. Applied Sciences, 13(6), 3941. https://doi.org/10.3390/app13063941