Using Historical Data to Dynamically Route Post-Disaster Assessment Unmanned Aerial Vehicles in the Context of Responding to Tornadoes
Abstract
:Featured Application
Abstract
1. Introduction and Literature Review
2. Problem Context
3. Model Concepts and Dynamic Routing Setup
3.1. Base Score of a Waypoint
3.2. Influence Matrix
3.3. Computed Score of a Waypoint
3.4. Routing the UAV: Parameters and Considerations
3.5. Evaluation of the Quality of the Solution
- How quickly the damaged area is identified;
- How quickly the extent of the damage is identified; and
- How quickly the UAV finishes assessing the area (confirms there is no more damage in the area).
4. Experimentation
4.1. Generated Cases
4.2. Testing on Generated Cases
4.3. Results on the Generated Cases
5. Testing on Historical Data
5.1. Data and Creation of the Historical Cases
5.2. Comparison of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MStC | Minimum Score to Consider |
SAR | Search and Rescue |
SBW | Storm Based Warning |
UAV | Unmanned Aerial Vehicle |
Appendix A. Additional Result Tables
Initial Route? | Matrix Type | MStC | Mean Score | Std Dev. | Score, Find Damage | Score, Finish Route |
---|---|---|---|---|---|---|
FALSE | data-driven-first | 0.20 | 4.8922 | 4.2596 | 694 | 3624 |
FALSE | symmetric | 0.20 | 5.0110 | 3.7612 | 735 | 3664 |
FALSE | data-driven-first | 0.10 | 5.0967 | 4.5166 | 770 | 4542 |
FALSE | symmetric | 0.10 | 5.1201 | 3.8677 | 798 | 4592 |
FALSE | symmetric | 0.00 | 5.2522 | 4.5352 | 826 | 7089 |
FALSE | data-driven-first | 0.00 | 5.3132 | 4.6398 | 832 | 7083 |
TRUE | symmetric | 0.20 | 6.4050 | 17.0184 | 962 | 3481 |
TRUE | symmetric | 0.10 | 6.5172 | 19.5489 | 962 | 4116 |
TRUE | symmetric | 0.00 | 6.7681 | 20.7267 | 962 | 7608 |
TRUE | data-driven | 0.20 | 9.5569 | 16.3940 | 962 | 4061 |
FALSE | data-driven | 0.20 | 10.8395 | 14.7529 | 694 | 4269 |
TRUE | data-driven | 0.10 | 10.9968 | 21.4810 | 962 | 4923 |
FALSE | symmetric-first | 0.20 | 11.3058 | 15.7532 | 735 | 4349 |
FALSE | data-driven | 0.10 | 11.4801 | 16.3374 | 770 | 5378 |
FALSE | symmetric-first | 0.10 | 11.6730 | 17.1360 | 798 | 5445 |
FALSE | symmetric-first | 0.00 | 12.1823 | 18.2321 | 826 | 8476 |
FALSE | data-driven | 0.00 | 12.2794 | 17.4458 | 832 | 8478 |
TRUE | data-driven | 0.00 | 14.2036 | 40.4971 | 962 | 8643 |
Initial Route? | Matrix Type | MStC | Mean Score | Std Dev. | Score, Find Damage | Score, Finish Route |
---|---|---|---|---|---|---|
FALSE | data-driven-first | 0.20 | 9.3606 | 3.7923 | 457 | 3647 |
FALSE | symmetric | 0.20 | 9.4933 | 3.7334 | 453 | 3645 |
TRUE | symmetric | 0.20 | 9.6422 | 4.3476 | 519 | 3406 |
FALSE | data-driven-first | 0.10 | 10.0876 | 4.3673 | 458 | 4360 |
FALSE | symmetric | 0.10 | 10.0928 | 4.3638 | 455 | 4367 |
FALSE | data-driven-first | 0.00 | 10.8769 | 4.8211 | 462 | 6504 |
FALSE | symmetric | 0.00 | 10.9658 | 4.8593 | 455 | 6500 |
TRUE | data-driven | 0.20 | 10.9943 | 5.4299 | 519 | 3830 |
TRUE | symmetric | 0.10 | 11.0887 | 5.7820 | 519 | 4018 |
FALSE | symmetric-first | 0.20 | 11.8142 | 5.8025 | 453 | 4086 |
FALSE | data-driven | 0.20 | 11.8323 | 5.9181 | 457 | 4079 |
FALSE | symmetric-first | 0.10 | 13.0132 | 6.2842 | 455 | 5150 |
TRUE | data-driven | 0.10 | 13.0765 | 6.9395 | 519 | 4601 |
FALSE | data-driven | 0.10 | 13.1357 | 6.3262 | 458 | 5158 |
TRUE | symmetric | 0.00 | 14.1262 | 9.8253 | 519 | 6550 |
FALSE | data-driven | 0.00 | 14.3103 | 6.8814 | 462 | 7655 |
FALSE | symmetric-first | 0.00 | 14.3124 | 6.7930 | 455 | 7632 |
TRUE | data-driven | 0.00 | 17.7232 | 12.3189 | 519 | 7229 |
Appendix B. Data Locations
What? | Where? | When? | Notes |
---|---|---|---|
Weather SBW Data | https://mesonet.agron.iastate.edu/ | 1 June 2022 | For the WFOs: OUN, TSA, AMA, SHV, LZK, LCH, LIX, JAN, MEG, HUN, BMX, MOB, FFC, TAE, JAX, CHS, PAH, OHX, MRX, LMK, JKL |
Road data for South Carolina | http://info2.scdot.org/GISMapping/Pages/GIS.aspx | 2 May 2022 | Statewide Highways; Statewide Other Roads |
Road data for Texas | https://gis-txdot.opendata.arcgis.com/datasets/d4f7206d27af4358acb70cb1cc819d10_0/explore?location=31.008846%2C-100.055172%2C6.28 | 7 June 2022 | |
Road data for Oklahoma | https://okmaps.org/OGI/search.aspx | 19 June 2022 | ODOT Roadways; ODOT Highways; ODOT Local Roadways |
Road data for Kentucky | https://transportation.ky.gov/Planning/Pages/Centerlines.aspx | 29 May 2022 | Centerline Network >All Roads |
Road data for Arkansas | https://gis.arkansas.gov/product/arkansas-road-inventory/ | 1 June 2023 | Updated 2020-10-30 |
Road data for Tennessee | https://tn-tnmap.opendata.arcgis.com/datasets/37229399437446b9acd653f353f7decc_0/explore?location=35.785027%2C-85.962491%2C7.72 | 3 June 2022 | |
Road data for Alabama | https://data-algeohub.opendata.arcgis.com/search?groupIds=b54e33ef0a114bacb2fa059fc0bf1340 | 19 June 2022 | Need to download each county separately |
Road data for Mississippi | https://www.maris.state.ms.us/HTML/DATA/data_Transportation/MDOTRoadCenterlines.html#gsc.tab=0 | 23 February 2022 | |
Road data for Georgia | https://www.sciencebase.gov/catalog/item/5a5f36bee4b06e28e9bfc1ba | 15 June 2022 | TRAN_Georgia_State_Shape > Shape/Trans_RoadSegment_0.shp; and TRAN_Georgia_State_Shape > Shape/Trans_RoadSegment_1.shp |
Road data for Florida | https://www.sciencebase.gov/catalog/item/5a86ea14e4b00f54eb3a1b55 | 15 June 2022 | TRAN_Florida_State_Shape > Shape/Trans_RoadSegment_0.shp and TRAN_Florida_State_Shape > Shape/Trans_RoadSegment_1.shp; and TRAN_Florida_State_Shape > Shape/Trans_RoadSegment_2.shp |
Road data for Louisiana | https://www.sciencebase.gov/catalog/item/5a5f36c4e4b06e28e9bfc1ca | 15 June 2022 | Trans_RoadSegment |
References
- Beck, Z. Collaborative Search and Rescue by Autonomous Robots. Ph.D. Thesis, University of Southampton, Southampton, UK, 2016. [Google Scholar]
- Grogan, S.; Gamache, M.; Pellerin, R. The Use of Unmanned Aerial Vehicles and Drones in Search and Rescue Operations—A Survey. In Proceedings of the Pro-Log Project Logistic 2018, Hull, UK, 28–29 June 2018; pp. 1–20. [Google Scholar]
- Kashino, Z.; Nejat, G.; Benhabib, B. Multi-UAV Based Autonomous Wilderness Search and Rescue Using Target Iso-Probability Curves. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 636–643. [Google Scholar] [CrossRef]
- Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for Search and Rescue Operations in Mountain Avalanche Events. Geomat. Nat. Hazards Risk 2017, 8, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Beck, Z.; Teacy, L.; Rogers, A. Online Planning for Collaborative Search and Rescue by Heterogeneous Robot Teams. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, Singapore, 9–13 May 2016; p. 9. [Google Scholar] [CrossRef]
- Beck, Z.; Teacy, W.T.L.; Rogers, A.; Jennings, N.R. Collaborative Online Planning for Automated Victim Search in Disaster Response. Robot. Auton. Syst. 2018, 100, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Dominici, D.; Alicandro, M.; Massimi, V. UAV Photogrammetry in the Post-Earthquake Scenario: Case Studies in L’Aquila. Geomat. Nat. Hazards Risk 2017, 8, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Golabi, M.; Shavarani, S.M.; Izbirak, G. An Edge-Based Stochastic Facility Location Problem in UAV-supported Humanitarian Relief Logistics: A Case Study of Tehran Earthquake. Nat. Hazards 2017, 87, 1545–1565. [Google Scholar] [CrossRef]
- Fernandes, O.; Murphy, R.; Merrick, D.; Adams, J.; Hart, L.; Broder, J. Quantitative Data Analysis: Small Unmanned Aerial Systems at Hurricane Michael. In Proceedings of the 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR, Wurzburg, Germany, 2–4 September 2019; pp. 116–117. [Google Scholar] [CrossRef]
- Murphy, R.R.; Steimle, E.; Griffin, C.; Cullins, C.; Hall, M.; Pratt, K. Cooperative Use of Unmanned Sea Surface and Micro Aerial Vehicles at Hurricane Wilma. J. Field Robot. 2008, 25, 164–180. [Google Scholar] [CrossRef]
- Grogan, S.; Pellerin, R.; Gamache, M. Using Tornado-Related Weather Data to Route Unmanned Aerial Vehicles to Locate Damage and Victims. OR Spectr. 2021. [Google Scholar] [CrossRef]
- Grogan, S.; Perrier, N.; Gamache, M.; Pellerin, R. Location of Disaster Assessment UAVs Using Historical Tornado Data. Geomat. Nat. Hazards Risk 2022, 13, 2385–2404. [Google Scholar] [CrossRef]
- Breivik, Ø.; Allen, A.A.; Maisondieu, C.; Olagnon, M. Advances in Search and Rescue at Sea. Ocean. Dyn. 2013, 63, 83–88. [Google Scholar] [CrossRef] [Green Version]
- El-Tawil, S.; Aguirre, B. Search and Rescue in Collapsed Structures: Engineering and Social Science Aspects. Disasters 2010, 34, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Mirowski, P.; Ho, T.K.; Saehoon, Y.; MacDonald, M. SignalSLAM: Simultaneous Localization and Mapping with Mixed WiFi, Bluetooth, LTE and Magnetic Signals. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France, 28–31 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Liu, B.; Cao, C.; Fu, X. HAWK: An Unmanned Mini-Helicopter-Based Aerial Wireless Kit for Localization. IEEE Trans. Mob. Comput. 2014, 13, 287–298. [Google Scholar] [CrossRef]
- Acuna, V.; Kumbhar, A.; Vattapparamban, E.; Rajabli, F.; Guvenc, I. Localization of WiFi Devices Using Probe Requests Captured at Unmanned Aerial Vehicles. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Afshartous, D.; Guan, Y.; Mehrotra, A. US Coast Guard Air Station Location with Respect to Distress Calls: A Spatial Statistics and Optimization Based Methodology. Eur. J. Oper. Res. 2009, 196, 1086–1096. [Google Scholar] [CrossRef]
- Jevtic, A.; Andina, D.; Jaimes, A.; Gomez, J.; Jamshidi, M. Unmanned Aerial Vehicle Route Optimization Using Ant System Algorithm. In Proceedings of the 2010 5th International Conference on System of Systems Engineering, Loughborough, UK, 22–24 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Pasqualetti, F.; Durham, J.W.; Bullo, F. Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms. IEEE Trans. Robot. 2012, 28, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Zillies, J.; Westphal, S.; Scheidt, D. A Column Generation Approach for Optimized Routing and Coordination of a UAV Fleet. In Proceedings of the 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016. [Google Scholar] [CrossRef]
- Bakhshipour, M.; Jabbari Ghadi, M.; Namdari, F. Swarm Robotics Search & Rescue: A Novel Artificial Intelligence-Inspired Optimization Approach. Appl. Soft Comput. 2017, 57, 708–726. [Google Scholar] [CrossRef]
- Ganesan, S.; Shakya, M.; Aqueel, A.F.; Nambiar, L.M. Small Disaster Relief Robots with Swarm Intelligence Routing; ACM Press: New York, NY, USA, 2011; p. 123. [Google Scholar] [CrossRef]
- Hayat, S.; Yanmaz, E.; Brown, T.X.; Bettstetter, C. Multi-Objective UAV Path Planning for Search and Rescue. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5569–5574. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Bharadwaj, K. Multi-Robot Exploration and Terrain Coverage in an Unknown Environment. Robot. Auton. Syst. 2012, 60, 123–132. [Google Scholar] [CrossRef]
- Olson, E.; Strom, J.; Morton, R.; Richardson, A.; Ranganathan, P.; Goeddel, R.; Bulic, M.; Crossman, J.; Marinier, B. Progress toward Multi-Robot Reconnaissance and the MAGIC 2010 Competition. J. Field Robot. 2012, 29, 762–792. [Google Scholar] [CrossRef] [Green Version]
- Loukas, G.; Timotheou, S. Connecting Trapped Civilians to a Wireless Ad Hoc Network of Emergency Response Robots. In Proceedings of the 2008 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, 19–21 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 599–603. [Google Scholar] [CrossRef]
- Couceiro, M.S.; Rocha, R.P.; Ferreira, N.M.F. Ensuring Ad Hoc Connectivity in Distributed Search with Robotic Darwinian Particle Swarms. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 284–289. [Google Scholar] [CrossRef]
- Fard, F.S.N.; Parvar, H.; Shiri, M.E.; Soleimani, E. Using Self-Configurable Particle Swarm Optimization for Allocation Position of Rescue Robots. In Proceedings of the Second International Conference on Computer and Network Technology, Bangkok, Thailand, 23–25 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 362–366. [Google Scholar] [CrossRef]
- Tang, J.; Chen, X.; Zhu, X.; Zhu, F. Dynamic Reallocation Model of Multiple Unmanned Aerial Vehicle Tasks in Emergent Adjustment Scenarios. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–43. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Couceiro, M.S.; Rocha, R.P.; Ferreira, N.M. A PSO Multi-Robot Exploration Approach over Unreliable MANETs. Adv. Robot. 2013, 27, 1221–1234. [Google Scholar] [CrossRef]
- Choi, S.; Zhu, W. Performance Optimisation of Mobile Robots for Search-and-Rescue. Appl. Mech. Mater. 2012, 232, 403–407. [Google Scholar] [CrossRef]
- Mouradian, C.; Sahoo, J.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Coalition Formation Algorithm for Multi-Robot Task Allocation in Large-Scale Natural Disasters. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1909–1914. [Google Scholar] [CrossRef] [Green Version]
- Straub, J.; Marsh, R.; Mohammad, A.F. Robotic Disaster Recovery Efforts with Ad-Hoc Deployable Cloud Computing. Proc. SPIE 2013, 8711, 87110Q. [Google Scholar] [CrossRef]
- Pineda, L.; Takahashi, T.; Jung, H.T. Continual Planning for Search and Rescue Robots. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Sardouk, A.; Mansouri, M.; Merghem-Boulahia, L.; Gaiti, D.; Rahim-Amoud, R. Multi-Agent System Based Wireless Sensor Network for Crisis Management. In Proceedings of the IEEE Globecom 2010, Miami, FL, USA, 6–10 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Center, S.P. Storm Prediction Center Severe Weather GIS (SVRGIS) Page. 2022. Available online: https://www.spc.noaa.gov/gis/svrgis/ (accessed on 20 July 2022).
Initial Route? | Matrix Type | MStC | Mean Score | Std Dev. |
---|---|---|---|---|
FALSE | data-driven-first | 0.10 | 3.2596 | 1.8526 |
TRUE | symmetric | 0.20 | 3.3282 | 3.1588 |
FALSE | data-driven-first | 0.00 | 3.3695 | 2.1064 |
FALSE | symmetric | 0.10 | 3.3883 | 2.6931 |
FALSE | data-driven-first | 0.20 | 3.4128 | 2.5698 |
TRUE | symmetric | 0.00 | 3.4198 | 3.5320 |
FALSE | symmetric | 0.20 | 3.4329 | 2.3417 |
TRUE | symmetric | 0.10 | 3.4422 | 4.1455 |
FALSE | symmetric | 0.00 | 3.4642 | 3.1460 |
TRUE | data-driven | 0.10 | 3.8732 | 3.1936 |
TRUE | data-driven | 0.20 | 3.8860 | 3.0132 |
FALSE | data-driven | 0.20 | 3.9305 | 3.7456 |
TRUE | data-driven | 0.00 | 3.9545 | 3.2255 |
FALSE | symmetric-first | 0.10 | 3.9703 | 3.7709 |
FALSE | data-driven | 0.10 | 4.0058 | 3.8564 |
FALSE | symmetric-first | 0.20 | 4.0516 | 3.8829 |
FALSE | data-driven | 0.00 | 4.0698 | 4.3266 |
FALSE | symmetric-first | 0.00 | 4.1296 | 4.9137 |
Initial Route? | Matrix Type | MStC | Mean Score | Score Find Damage |
---|---|---|---|---|
FALSE | data-driven-first | 0.20 | 3.4128 | 7592 |
FALSE | data-driven | 0.20 | 3.9305 | 7592 |
FALSE | data-driven-first | 0.10 | 3.2596 | 7614 |
FALSE | data-driven | 0.10 | 4.0058 | 7614 |
FALSE | data-driven-first | 0.00 | 3.3695 | 7733 |
FALSE | data-driven | 0.00 | 4.0698 | 7733 |
FALSE | symmetric | 0.10 | 3.3883 | 8001 |
FALSE | symmetric-first | 0.10 | 3.9703 | 8001 |
FALSE | symmetric | 0.20 | 3.4329 | 8043 |
FALSE | symmetric-first | 0.20 | 4.0516 | 8043 |
FALSE | symmetric | 0.00 | 3.4642 | 8071 |
FALSE | symmetric-first | 0.00 | 4.1296 | 8071 |
TRUE | symmetric | 0.20 | 3.3282 | 9377 |
TRUE | symmetric | 0.10 | 3.4422 | 9377 |
TRUE | symmetric | 0.00 | 3.4198 | 9377 |
TRUE | data-driven | 0.10 | 3.8732 | 9377 |
TRUE | data-driven | 0.20 | 3.8860 | 9377 |
TRUE | data-driven | 0.00 | 3.9545 | 9377 |
Initial Route? | Matrix Type | MStC | Mean Score | Score Finish Route |
---|---|---|---|---|
TRUE | symmetric | 0.20 | 3.3282 | 36,269 |
TRUE | data-driven | 0.20 | 3.8860 | 36,619 |
FALSE | data-driven | 0.20 | 3.9305 | 38,403 |
FALSE | symmetric-first | 0.20 | 4.0516 | 38,469 |
TRUE | symmetric | 0.10 | 3.4422 | 40,480 |
FALSE | data-driven-first | 0.20 | 3.4128 | 41,301 |
FALSE | symmetric | 0.20 | 3.4329 | 41,349 |
TRUE | data-driven | 0.10 | 3.8732 | 43,395 |
FALSE | symmetric-first | 0.10 | 3.9703 | 48,069 |
FALSE | data-driven | 0.10 | 4.0058 | 48,101 |
FALSE | data-driven-first | 0.10 | 3.2596 | 49,230 |
FALSE | symmetric | 0.10 | 3.3883 | 49,263 |
TRUE | symmetric | 0.00 | 3.4198 | 50,218 |
FALSE | symmetric | 0.00 | 3.4642 | 60,850 |
TRUE | data-driven | 0.00 | 3.9545 | 60,895 |
FALSE | data-driven-first | 0.00 | 3.3695 | 60,926 |
FALSE | symmetric-first | 0.00 | 4.1296 | 64,801 |
FALSE | data-driven | 0.00 | 4.0698 | 65,037 |
Initial Route? | Matrix Type | MStC | Mean Score | Std Dev. |
---|---|---|---|---|
FALSE | data-driven-first | 0.20 | 6.3817 | 4.6151 |
FALSE | symmetric | 0.20 | 6.5051 | 4.3033 |
FALSE | data-driven-first | 0.10 | 6.7603 | 5.0457 |
FALSE | symmetric | 0.10 | 6.7777 | 4.6675 |
FALSE | symmetric | 0.00 | 7.1567 | 5.3666 |
FALSE | data-driven-first | 0.00 | 7.1678 | 5.3796 |
TRUE | symmetric | 0.20 | 7.4841 | 14.1935 |
TRUE | symmetric | 0.10 | 8.0410 | 16.4381 |
TRUE | symmetric | 0.00 | 9.2208 | 18.1696 |
TRUE | data-driven | 0.20 | 10.0360 | 13.7550 |
FALSE | data-driven | 0.20 | 11.1705 | 12.5204 |
FALSE | symmetric-first | 0.20 | 11.4753 | 13.2841 |
TRUE | data-driven | 0.10 | 11.6901 | 18.0052 |
FALSE | data-driven | 0.10 | 12.0320 | 13.8424 |
FALSE | symmetric-first | 0.10 | 12.1197 | 14.4577 |
FALSE | symmetric-first | 0.00 | 12.8923 | 15.4161 |
FALSE | data-driven | 0.00 | 12.9564 | 14.8083 |
TRUE | data-driven | 0.00 | 15.3768 | 33.8396 |
Initial Route? | Matrix Type | MStC | Mean Score | Score Find Damage |
---|---|---|---|---|
FALSE | data-driven-first | 0.20 | 6.3817 | 615 |
FALSE | data-driven | 0.20 | 11.1705 | 615 |
FALSE | symmetric | 0.20 | 6.5051 | 641 |
FALSE | symmetric-first | 0.20 | 11.4753 | 641 |
FALSE | data-driven-first | 0.10 | 6.7603 | 666 |
FALSE | data-driven | 0.10 | 12.0320 | 666 |
FALSE | symmetric | 0.10 | 6.7777 | 684 |
FALSE | symmetric-first | 0.10 | 12.1197 | 684 |
FALSE | symmetric | 0.00 | 7.1567 | 702 |
FALSE | symmetric-first | 0.00 | 12.8923 | 702 |
FALSE | data-driven-first | 0.00 | 7.1678 | 709 |
FALSE | data-driven | 0.00 | 12.9564 | 709 |
TRUE | symmetric | 0.20 | 7.4841 | 814 |
TRUE | symmetric | 0.10 | 8.0410 | 814 |
TRUE | symmetric | 0.00 | 9.2208 | 814 |
TRUE | data-driven | 0.20 | 10.0360 | 814 |
TRUE | data-driven | 0.10 | 11.6901 | 814 |
TRUE | data-driven | 0.00 | 15.3768 | 814 |
Initial Route? | Matrix Type | MStC | Mean Score | Score Finish Route |
---|---|---|---|---|
TRUE | symmetric | 0.20 | 7.4841 | 3456 |
FASLE | data-driven-first | 0.20 | 6.3817 | 3631 |
FASLE | symmetric | 0.20 | 6.5051 | 3658 |
TRUE | data-driven | 0.20 | 10.0360 | 3984 |
TRUE | symmetric | 0.10 | 8.0410 | 4083 |
FASLE | data-driven | 0.20 | 11.1705 | 4206 |
FASLE | symmetric-first | 0.20 | 11.4753 | 4261 |
FASLE | data-driven-first | 0.10 | 6.7603 | 4481 |
FASLE | symmetric | 0.10 | 6.7777 | 4517 |
TRUE | data-driven | 0.10 | 11.6901 | 4816 |
FASLE | data-driven | 0.10 | 12.0320 | 5304 |
FASLE | symmetric-first | 0.10 | 12.1197 | 5347 |
FASLE | data-driven-first | 0.00 | 7.1678 | 6890 |
FASLE | symmetric | 0.00 | 7.1567 | 6892 |
TRUE | symmetric | 0.00 | 9.2208 | 7255 |
TRUE | data-driven | 0.00 | 15.3768 | 8172 |
FASLE | symmetric-first | 0.00 | 12.8923 | 8194 |
FASLE | data-driven | 0.00 | 12.9564 | 8203 |
Goal | In Generated Cases | In Historical Cases |
---|---|---|
Minimize the distance/time it takes to uncover extent of tornado | Use data-driven-first or symmetric influence matrix | Use data-driven-first or symmetric influence matrix |
Reduce the standard deviation of distance/time it takes to uncover extent of tornado | Use data-driven-first matrix and not using an initial route | Do not use an initial route and use a data-driven-first or symmetric influence matrix |
Minimize the distance/time it takes to initially identify tornado damage | Use data-driven-first or data-driven matrix Do not use an initial route and all else being equal a higher MStC helps | Do not use an initial route Use a higher MStC |
Minimize the distance/time it takes to complete the mission | Use a higher MStC Using an initial route | Use a higher MStC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grogan, S.; Gamache, M.; Pellerin, R. Using Historical Data to Dynamically Route Post-Disaster Assessment Unmanned Aerial Vehicles in the Context of Responding to Tornadoes. Appl. Sci. 2023, 13, 4178. https://doi.org/10.3390/app13074178
Grogan S, Gamache M, Pellerin R. Using Historical Data to Dynamically Route Post-Disaster Assessment Unmanned Aerial Vehicles in the Context of Responding to Tornadoes. Applied Sciences. 2023; 13(7):4178. https://doi.org/10.3390/app13074178
Chicago/Turabian StyleGrogan, Sean, Michel Gamache, and Robert Pellerin. 2023. "Using Historical Data to Dynamically Route Post-Disaster Assessment Unmanned Aerial Vehicles in the Context of Responding to Tornadoes" Applied Sciences 13, no. 7: 4178. https://doi.org/10.3390/app13074178
APA StyleGrogan, S., Gamache, M., & Pellerin, R. (2023). Using Historical Data to Dynamically Route Post-Disaster Assessment Unmanned Aerial Vehicles in the Context of Responding to Tornadoes. Applied Sciences, 13(7), 4178. https://doi.org/10.3390/app13074178