Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PNR | photon-number-resolving |
HPD | hybrid photodetector |
BS | beam splitter |
CCD | coupled-charged device |
CMOS | complementary metal-oxide-semiconductor |
References
- Valencia, A.; Scarcelli, G.; D’Angelo, M.; Shih, Y.H. Two-photon imaging with thermal light. Phys. Rev. Lett. 2005, 94, 063601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martienssen, W.; Spiller, E. Coherence and fluctuations in light beams. Am. J. Phys. 1964, 32, 919–926. [Google Scholar] [CrossRef]
- Arecchi, F.T. Measurement of the Statistical Distribution of Gaussian and Laser Sources. Phys. Rev. Lett. 1995, 15, 912. [Google Scholar] [CrossRef]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Correlated imaging, quantum and classical. Phys. Rev. A 2004, 70, 013802. [Google Scholar] [CrossRef] [Green Version]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar] [CrossRef] [Green Version]
- Bache, M.; Brambilla, E.; Gatti, A.; Lugiato, L.A. Ghost imaging using homodyne detection. Phys. Rev. A 2004, 70, 023823. [Google Scholar] [CrossRef] [Green Version]
- Bache, M.; Brambilla, E.; Gatti, A.; Lugiato, L.A. Ghost imaging schemes: Fast and broadband. Opt. Express 2004, 12, 6067. [Google Scholar] [CrossRef] [Green Version]
- Crosby, S.; Castelletto, S.; Aruldoss, C.; Scholten, R.E.; Roberts, A. Modelling of classical ghost images obtained using scattered light. New J. Phys. 2007, 9, 285. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Lugiato, L.A.; Gatti, A. Differential Ghost Imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [CrossRef] [Green Version]
- Allevi, A. Mesoscopic States of Light for the Detection of Weakly Absorbing Objects. Photonics 2022, 9, 819. [Google Scholar] [CrossRef]
- Mudry, E.; Belkebir, K.; Girard, J.; Savatier, J.; Le Moal, E.; Nicoletti, C.; Allain, M.; Sentenac, A. Structured illumination microscopy using unknown speckle patterns. Nat. Photon. 2012, 6, 312–315. [Google Scholar] [CrossRef]
- Kulkarni, R.; Pal, P.; Banoth, E. Spatio-temporal analysis of dynamic speckle patterns using singular value decomposition. Opt. Lasers Eng. 2021, 142, 106588. [Google Scholar] [CrossRef]
- Erkmen, B.I.; Shapiro, J.H. Signal-to-noise ratio of Gaussian-state ghost imaging. Phys. Rev. A 2009, 79, 023833. [Google Scholar] [CrossRef] [Green Version]
- Iskhakov, T.; Allevi, A.; Kalashnikov, D.A.; Sala, V.G.; Takeuchi, M.; Bondani, M.; Chekhova, M. Noise reduction measurements and new ghost imaging protocols. Eur. Phys. J. Spec. Top. 2011, 199, 127–138. [Google Scholar] [CrossRef]
- Ragy, S.; Adesso, G. Nature of light correlations in ghost imaging. Sci. Rep. 2012, 2, 651. [Google Scholar] [CrossRef] [Green Version]
- Dove, J.; Shapiro, J.H. Speckled speckled speckle. Opt. Express 2020, 28, 22105. [Google Scholar] [CrossRef]
- Bromberg, Y.; Cao, H. Generating non-Rayleigh speckles with tailored intensity statistics. Phys. Rev. Lett. 2014, 112, 213904. [Google Scholar] [CrossRef] [Green Version]
- Bender, N.; Yilmaz, H.; Bromberg, Y.; Cao, H. Customizing speckle intensity statistics. Optica 2018, 5, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.B.; Cavalcante, H.L.D.S.; de Oliveira, G.F., Jr.; Passerat de Silans, T.; Vidal, I.; Chevrollier, M.; Oriá, M. Controlling the intensity statistics of speckle patterns: From normal to subthermal or superthermal distributions. Phys. Rev. A 2019, 99, 033838. [Google Scholar] [CrossRef]
- Li, Z.; Nie, X.; Yang, F.; Liu, X.; Liu, D.; Dong, X.; Zhao, X.; Peng, T.; Zubairy, M.S.; Scully, M.O. Sub-Rayleigh second-order correlation imaging using spatially distributive colored noise speckle patterns. Opt. Express 2021, 29, 19621–19630. [Google Scholar] [CrossRef] [PubMed]
- Allevi, A.; Bondani, M. Direct detection of super-thermal photon-number statistics in second-harmonic generation. Opt. Lett. 2015, 40, 3089–3092. [Google Scholar] [CrossRef] [PubMed]
- Allevi, A.; Cassina, S.; Bondani, M. Super-thermal light for imaging applications. Quantum Meas. Quantum Metrol. 2017, 4, 26–34. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Burlington, MA, USA; San Diego, CA, USA; London, UK, 2008; pp. 84–91. [Google Scholar]
- O’ Donnell, K.A. Speckle statistics of doubly scattered light. J. Opt. Soc. Am. 1982, 72, 1459–1463. [Google Scholar] [CrossRef]
- Newman, D. K distributions from doubly scattered light. J. Opt. Soc. Am. A 1985, 2, 22–26. [Google Scholar] [CrossRef]
- Barakat, R.; Salawitch, R.J. Second and fourth-order statistics of doubly scattered speckle. Opt. Acta Int. J. Opt. 1986, 33, 79–89. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M. Spatial superbunching of light. Model sources. Opt. Lett. 2019, 44, 4012–4015. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts & Company: Greenwood Village, CO, USA, 2007. [Google Scholar]
- Yoshimura, T.; Fujiwara, K. Statistical properties of doubly scattered image speckle. J. Opt. Soc. Am. A 1992, 9, 91–95. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Wang, Z.; Zhang, F.; Chen, H.; Zheng, H.; Liu, J.; Li, F.L.; Xu, Z. Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass. Opt. Commun. 2019, 437, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Avenhaus, M.; Coldenstrodt-Ronge, H.B.; Laiho, K.; Mauerer, W.; Walmsley, I.A.; Silberhorn, C. Photon Number Statistics of Multimode Parametric down-Conversion. Phys. Rev. Lett. 2008, 101, 053601. [Google Scholar] [CrossRef] [Green Version]
- Peřina, J., Jr.; Hamar, M.; Michálek, V.; Haderka, O. Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera. Phys. Rev. A 2012, 85, 023816. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, S.; Friedrich, F.; Molitor, A.; Reichert, M.; Elsäßer, W.; Walser, R. Tailored quantum statistics from broadband states of light. New J. Phys. 2015, 17, 043039. [Google Scholar] [CrossRef] [Green Version]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector. Sci. Rep. 2016, 6, 26025. [Google Scholar] [CrossRef] [Green Version]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Homodyne-like detection for coherent state-discrimination in the presence of phase noise. Opt. Express 2017, 25, 10685–10692. [Google Scholar] [CrossRef] [Green Version]
- Straka, I.; Mika, J.; Ježek, M. Generator of arbitrary classical photon statistics. Opt. Express 2018, 26, 8998–9010. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Zhou, Y.; Wang, S.; Shen, M.; Taher, T.; Tang, H.X. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. 2023, 17, 112–119. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Multi-mode twin-beam states in the mesoscopic intensity domain. Phys. Lett. A 2022, 423, 127828. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Novel scheme for secure data transmission based on mesoscopic twin beams and photon-number-resolving detectors. Sci. Rep. 2022, 12, 15621. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Feasibility of a Novel Quantum Communication Protocol in Jerlov Type I Water. Entropy 2023, 25, 16. [Google Scholar] [CrossRef]
- Available online: https://www.hamamatsu.com/eu/en/product/cameras/qcmos-cameras/C15550-20UP.html (accessed on 31 March 2023).
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Allevi, A.; Olivares, S.; Bondani, M. Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states. Phys. Rev. A 2012, 85, 063835. [Google Scholar] [CrossRef] [Green Version]
- Allevi, A.; Bondani, M.; Andreoni, A. Photon-number correlations by photon-number resolving detectors. Opt. Lett. 2010, 35, 1707–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondani, M.; Allevi, A.; Agliati, A.; Andreoni, A. Self-consistent characterization of light statistics. J. Mod. Opt. 2009, 56, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Allevi, A.; Bondani, M. Statistics of twin-beam states by photon-number resolving detectors up to pump depletion. J. Opt. Soc. Am. B 2014, 31, B14–B19. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Nonlinear and quantum optical properties and applications of intense twin-beams. Adv. At. Mol. Opt. Phys. 2017, 66, 49–110. [Google Scholar]
- Liu, J.; Zhuang, R.; Zhang, X.; Wei, C.; Zheng, H.; Zhou, Y.; Chen, H.; He, Y.; Xu, Z. Simple and efficient way to generate superbunching pseudothermal light. Opt. Commun. 2021, 498, 127264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianciardi, C.; Allevi, A.; Bondani, M. Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Appl. Sci. 2023, 13, 4490. https://doi.org/10.3390/app13074490
Bianciardi C, Allevi A, Bondani M. Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Applied Sciences. 2023; 13(7):4490. https://doi.org/10.3390/app13074490
Chicago/Turabian StyleBianciardi, Camilla, Alessia Allevi, and Maria Bondani. 2023. "Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime" Applied Sciences 13, no. 7: 4490. https://doi.org/10.3390/app13074490
APA StyleBianciardi, C., Allevi, A., & Bondani, M. (2023). Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Applied Sciences, 13(7), 4490. https://doi.org/10.3390/app13074490