Improved Design of LNG Marine Loading Arm Docking Method Based on TRIZ Theory
Abstract
:1. Introduction
2. TRIZ Methods
3. The Problem Analysis
3.1. Functional Models
3.2. Causal Analysis
4. Innovative Design of Problem-Solving Method Based on TRIZ
4.1. Technical Contradiction Analysis and Invention Principle
4.2. Innovative Design of Information Collection
4.2.1. Target Image Recognition
4.2.2. Obtaining the Coordinates of the Target
4.2.3. Experimental Verification
4.3. Design of Automatic Control of LNG Marine Loading Arm
4.4. Su-Field Model and Standard Solutions
4.5. Technical Contradiction Analysis and Invention Principle
4.6. The Method of Numerical Analysis Is Adopted for Innovative Design
4.6.1. Determination of the Location of Optimization
4.6.2. Topological Optimization
4.6.3. The Results after Optimization
4.7. Innovative Design Using Mechanical Design Methods
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Outlook for Energy: A View to 2030. Available online: www.exxonmobil.com (accessed on 25 November 2022).
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An Eco-Friendly Cryogenic Fuel for Sustainable Development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Nwaoha, T.C. Inclusion of Hybrid Algorithm in Optimal Operations of Liquefied Natural Gas Transfer Arm under Uncertainty. Ships Offshore Struct. 2014, 9, 514–524. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Ge, S.S.; How, B.V.E.; Li, D. Dynamic Control for LNG Carrier with Output Constraints. IET Contr. Theory Appl. 2022, 16, 729–740. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, Z.; Chen, G. Experimental Investigation on Dynamic Responses of FLNG Connection System during Side-by-Side Offloading Operation. Ocean Eng. 2017, 136, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Uzoka, C.; Mishra, R. Integration of TRIZ and CFD to New Product Development Process. Int. J. Comput. Fluid Dyn. 2020, 34, 418–437. [Google Scholar] [CrossRef]
- Sen, N.; Baykal, Y.; Civek, T. Prevention of Tearing Failure during Forming of Lower Control Arm via TRIZ Methodology. J. Mater. Eng. Perform. 2021, 30, 7721–7729. [Google Scholar] [CrossRef]
- Almeida, S.T.; Mo, J.; Bil, C.; Ding, S.; Wang, X. Conceptual Design of a High-Speed Wire EDM Robotic End-Effector Based on a Systematic Review Followed by TRIZ. Machines 2021, 9, 132. [Google Scholar] [CrossRef]
- Chai, K.-H.; Zhang, J.; Tan, K.-C. A TRIZ-Based Method for New Service Design. J. Serv. Res. 2005, 8, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Cao, G.; Tan, R. Research on Optimization of TRIZ Application Driven by Design Needs and Targets. Procedia CIRP 2016, 39, 33–38. [Google Scholar] [CrossRef]
- Petković, D.; Issa, M.; Pavlović, N.D.; Zentner, L. Application of the TRIZ Creativity Enhancement Approach to Design of Passively Compliant Robotic Joint. Int. J. Adv. Manuf. Technol. 2013, 67, 865–875. [Google Scholar] [CrossRef]
- Savransk, S.D. Engineering of Creativity; CRC Press: New York, NY, USA, 2002. [Google Scholar]
- Wang, Y.-H.; Lee, C.-H.; Trappey, A.J.C. Service Design Blueprint Approach Incorporating TRIZ and Service QFD for a Meal Ordering System: A Case Study. Comput. Ind. Eng. 2017, 107, 388–400. [Google Scholar] [CrossRef]
- Cao, G.Z.; Guo, H.X.; Liang, T.; Tan, R.H. Function Modeling, Solving and Simulation Based on Effect in TRIZ. AMR 2011, 418–420, 2190–2194. [Google Scholar]
- Efimov-Soini, N.K.; Chechurin, L.S. Method of Ranking in the Function Model. Procedia CIRP 2016, 39, 22–26. [Google Scholar] [CrossRef]
- Aurisicchio, M.; Bracewell, R.; Armstrong, G. The Function Analysis Diagram: Intended Benefits and Coexistence with Other Functional Models. AIEDAM 2013, 27, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Alqudah, A.M.; Alqudah, A. Improving Machine Learning Recognition of Colorectal Cancer Using 3D GLCM Applied to Different Color Spaces. Multimed. Tools Appl. 2022, 81, 10839–10860. [Google Scholar] [CrossRef]
- Nandal, A.; Bhaskar, V.; Dhaka, A. Contrast-based Image Enhancement Algorithm Using Grey-scale and Colour Space. IET Signal Process. 2018, 12, 514–521. [Google Scholar] [CrossRef]
- Laganiere, R. OpenCV 2 Computer Vision Application Programming Cookbook: Over 50 Recipes to Master This Library of Programming Functions for Real-Time Computer Vision; Packt Publishing: Birmingham, UK, 2011. [Google Scholar]
- Kubrikov, M.V.; Saramud, M.V.; Karaseva, M.V. Method for the Optimal Positioning of the Cutter at the Honeycomb Block Cutting Applying Computer Vision. IEEE Access 2021, 9, 15548–15560. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Imitation of visual illusions via openCV and CNN. Int. J. Bifurc. Chaos 2008, 18, 3551–3609. [Google Scholar] [CrossRef]
- Žunić, J.; Hirota, K.; Rosin, P.L. A Hu Moment Invariant as a Shape Circularity Measure. Pattern Recognit. 2010, 43, 47–57. [Google Scholar] [CrossRef]
- Žunić, D.; Žunić, J. Shape Ellipticity from Hu Moment Invariants. Appl. Math. Comput. 2014, 226, 406–414. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Chen, B.; Wang, Z.; Sun, P.; Zheng, H.; Xu, T.; Qin, S. Optimization of Dynamic Load Distribution of a Serial-Parallel Hybrid Humanoid Arm. Mech. Mach. Theory 2020, 149, 103792. [Google Scholar] [CrossRef]
- Pertuz, S.A.; Llanos, C.; Pena, C.; Munoz, D. A Parallel System-on-Chip Approach for Impedance Controller for a 7-DoF Robotic Hand. Analog Integr. Circuits Process. 2021, 106, 195–204. [Google Scholar] [CrossRef]
- Song, M.J.; Lee, J.-G.; Park, J.-M.; Lee, S. Triggering Navigators for Innovative System Design: The Case of Lab-on-a-Chip Technology. Expert Syst. Appl. 2012, 39, 12451–12459. [Google Scholar] [CrossRef]
- Yao, P.; Zhou, K.; Lin, Y.; Tang, Y. Light-Weight Topological Optimization for Upper Arm of an Industrial Welding Robot. Metals 2019, 9, 1020. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; The, J. Validation and Optimization of SST K-Omega Turbulence Model for Pollutant Dispersion within a Building Array. Atmos. Environ. 2016, 145, 225–238. [Google Scholar] [CrossRef]
- Xu, Y.L. Wind Effects on Cable-Supported Bridges; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Caracoglia, L. Wind Effects on Structures: Modern Structural Design for Wind. J. Struct. Eng. 2021, 147, 07520001. [Google Scholar] [CrossRef]
- Murea, C.M.; Tiba, D. Topological Optimization and Minimal Compliance in Linear Elasticity. Evol. Equ. Control Theory 2020, 9, 1115–1131. [Google Scholar] [CrossRef] [Green Version]
Parameter | No. 25 Loss of Time |
---|---|
No. 33 ease of manufacture | 4, 28, 10, 34 |
No. 28 measurement accuracy | 32, 26, 28, 18 |
Main Parameters | Parameter Values |
---|---|
Sensor Size | |
Individual Pixel Size | |
Baseline | 6 cm |
Standard Lens | 3.4 mm focal length, distortion < 0.3% |
Camera Resolution and Frequency |
Serial Number | Distance Measurement | Distance Calculation | Absolute Error | Relative Error |
---|---|---|---|---|
(mm) | (mm) | (mm) | ||
1 | 497 | 497.2 | 0.2 | 0.03% |
2 | 601 | 598.5 | 2.5 | 0.41% |
3 | 698 | 696.9 | 1.1 | 0.16% |
4 | 797 | 794.7 | 2.3 | 0.29% |
5 | 900 | 894.4 | 5.6 | 0.63% |
6 | 1000 | 990.1 | 9.9 | 0.99% |
7 | 1103 | 1097.0 | 6.0 | 0.54% |
8 | 1202 | 1193.6 | 8.4 | 0.69% |
1 | 0 | 0 | 0 | |
2 | 90 | 0 | 0 | |
3 | 0 |
Parameter | No. 13 Stability of Object’s Composition |
---|---|
No. 11 stress of pressure | 35, 33, 2, 40 |
Parameter | No. 21 Power |
---|---|
No. 5 area of moving object | 19, 10, 32, 18 |
Upper and Lower Rope Wheels | Initial Structure | Improved Structure |
---|---|---|
Mass (kg) | 700.97 | 285.01 |
Maximum windward surface area (m2) | 1.24 | 0.72 |
Maximum stress (MPa) | 3.10 | 12.47 |
Maximum total deformation (mm) | 0.008 | 0.017 |
Counterweight Support | Initial Structure | Improved Structure |
---|---|---|
Mass (kg) | 693.70 | 326.34 |
Surface area (m2) | 1.10 | 0.52 |
Maximum stress (MPa) | 19.64 | 21.149 |
Maximum total deformation (mm) | 0.25 | 0.43 |
Position | Before Optimization | After Optimization | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Area (m2) | High Pressure (Pa) | Negative Pressure (Pa) | Pressure Difference (Pa) | Wind Load (N) | Area (m2) | High Pressure (Pa) | Negative Pressure (Pa) | Pressure Difference (Pa) | Wind Load (N) | |
1 | 0.62 | 887.86 | −326.69 | 1214.55 | 753.02 | 0.62 | 887.86 | −326.69 | 1214.55 | 753.02 |
2 | 0.57 | 1093.27 | −1095.80 | 2189.07 | 1247.77 | 0.57 | 1093.27 | −1095.80 | 2189.07 | 1247.77 |
3 | 1.54 | 1220.78 | −1590.12 | 2810.90 | 4328.79 | 1.02 | 1210.14 | 837.93 | 372.21 | 379.65 |
4 | 0.91 | 679.57 | −846.43 | 1526.00 | 1388.66 | 0.33 | 285.70 | −1462.22 | 1747.92 | 576.81 |
5 | 1.18 | 1185.74 | −772.82 | 1958.56 | 2311.10 | 1.18 | 1185.74 | −772.82 | 1958.56 | 2311.10 |
6 | 0.5 | 1324.82 | −1067.53 | 2392.34 | 1196.17 | 0.5 | 1324.82 | −1067.53 | 2392.34 | 1196.17 |
7 | 0.61 | 1404.55 | −1169.78 | 2574.33 | 1570.34 | 0.61 | 1404.55 | −1169.78 | 2574.33 | 1570.34 |
8 | 0.6 | 1164.99 | −818.47 | 1983.46 | 1190.08 | 0.6 | 1164.99 | −818.47 | 1983.46 | 1190.08 |
9 | 0.59 | 1493.05 | −1060.75 | 2553.79 | 1506.74 | 0.59 | 1493.05 | −1060.75 | 2553.79 | 1506.74 |
10 | 0.6 | 52.02 | −724.62 | 776.64 | 465.98 | 0.6 | 52.02 | −724.62 | 776.64 | 465.98 |
11 | 0.6 | 283.24 | −113.58 | 396.81 | 238.09 | 0.6 | 283.24 | −113.58 | 396.81 | 238.09 |
12 | 0.6 | 362.04 | −366.57 | 728.61 | 437.16 | 0.6 | 362.04 | −366.57 | 728.61 | 437.16 |
13 | 0.6 | 460.62 | −333.54 | 794.16 | 476.50 | 0.6 | 460.62 | −333.54 | 794.16 | 476.50 |
14 | 0.6 | 410.81 | −92.54 | 503.35 | 302.01 | 0.6 | 410.81 | −92.54 | 503.35 | 302.01 |
15 | 0.86 | 1621.35 | −1319.59 | 2940.93 | 2529.20 | 0.86 | 1621.35 | −1319.59 | 2940.93 | 2529.20 |
16 | 1.73 | 1389.85 | −1566.51 | 2956.36 | 5114.50 | 1.21 | 624.37 | −1108.11 | 1732.48 | 2096.31 |
17 | 0.38 | 1089.16 | −701.12 | 1790.27 | 680.30 | 0.38 | 1089.16 | −701.12 | 1790.27 | 680.30 |
18 | 0.39 | 1585.12 | −204.26 | 1789.38 | 697.86 | 0.39 | 1585.12 | −204.26 | 1789.38 | 697.86 |
19 | 0.39 | 1518.31 | −266.86 | 1785.16 | 696.21 | 0.39 | 1518.31 | −266.86 | 1785.16 | 696.21 |
20 | 0.79 | 542.96 | −272.35 | 815.30 | 644.09 | 0.79 | 542.96 | −272.35 | 815.30 | 644.09 |
Total wind load | 27,774.57 | 19,995.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Feng, W.; Liang, Z. Improved Design of LNG Marine Loading Arm Docking Method Based on TRIZ Theory. Appl. Sci. 2023, 13, 4525. https://doi.org/10.3390/app13074525
Mei J, Feng W, Liang Z. Improved Design of LNG Marine Loading Arm Docking Method Based on TRIZ Theory. Applied Sciences. 2023; 13(7):4525. https://doi.org/10.3390/app13074525
Chicago/Turabian StyleMei, Jie, Wuwei Feng, and Zirong Liang. 2023. "Improved Design of LNG Marine Loading Arm Docking Method Based on TRIZ Theory" Applied Sciences 13, no. 7: 4525. https://doi.org/10.3390/app13074525
APA StyleMei, J., Feng, W., & Liang, Z. (2023). Improved Design of LNG Marine Loading Arm Docking Method Based on TRIZ Theory. Applied Sciences, 13(7), 4525. https://doi.org/10.3390/app13074525