A Compact Self-Injection-Locked Narrow-Linewidth Diode Laser with Narrowband Dielectric Filter
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amann, M.-C.; Bosch, T.M.; Lescure, M.; Myllylae, R.A.; Rioux, M. Laser ranging: A critical review of unusual techniques for distance measurement. Opt. Eng. 2001, 40, 10–19. [Google Scholar]
- Burrows, E.; Liou, K.-Y. High resolution laser LIDAR utilising two-section distributed feedback semiconductor laser as a coherent source. Electron. Lett. 1990, 26, 577–579. [Google Scholar] [CrossRef]
- Al-Taiy, H.; Wenzel, N.; Preußler, S.; Klinger, J.; Schneider, T. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy. Opt. Lett. 2014, 39, 5826–5829. [Google Scholar] [CrossRef]
- Lu, H.-H.; Li, C.-Y.; Chen, H.-W.; Ho, C.-M.; Cheng, M.-T.; Yang, Z.-Y.; Lu, C.-K. A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique. IEEE Photonics J. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Tsai, W.-S.; Lu, H.-H.; Wu, H.-W.; Su, C.-W.; Huang, Y.-C. A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander. Sci. Rep. 2019, 9, 8605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.-H.; Li, C.-Y.; Lu, H.-H.; Chou, C.-R.; Hsia, H.-M.; Chen, Y.-H. A bidirectional FSO communication employing phase modulation scheme and remotely injection-locked DFB LD. J. Light. Technol. 2020, 38, 5883–5892. [Google Scholar] [CrossRef]
- Ragheb, A.M.; Tareq, Q.; Esmail, M.A.; Alrabeiah, M.R.; Alshebeili, S.A.; Khan, M.Z. Enabling WiGig Communications Using Quantum-Dash Laser Source Under Smoky Weather Conditions. IEEE Photonics J. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Grillot, F.; Duan, J.; Dong, B.; Huang, H. Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light Sci. Appl. 2021, 10, 156. [Google Scholar] [CrossRef]
- Asghar, H.; Sooudi, E.; Baig, M.A.; McInerney, J.G. Recent advances in stabilization of mode-locked quantum dash lasers at 1.55 µm by dual-loop optical feedback. Opt. Laser Technol. 2020, 122, 105884. [Google Scholar] [CrossRef]
- Hens, K.; Sperling, J.; Sherliker, B.; Waasem, N.; Ricks, A.; Lewis, J.; Elgcrona, G. Lasers for holographic applications: Important performance parameters and relevant laser technologies. In Practical Holography XXXIII: Displays, Materials, and Applications; SPIE: Bellingham, WA, USA, 2019; Volume 10944, pp. 29–36. [Google Scholar]
- Wei, X.; Xie, Z.; Zhu, S.-N.J.A.S. Self-injection locking of a distributed feedback laser diode using a high-finesse Fabry-Perot microcavity. Appl. Sci. 2019, 9, 4616. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Wang, X.; Guo, D.; Jia, K.; Fan, P.; Guo, J.; Ni, X.; Zhao, G.; Xie, Z.; Zhu, S.-n. Narrow-linewidth self-injection locked diode laser with a high-Q fiber Fabry–Perot resonator. Opt. Lett. 2021, 46, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Ashry, I.; Shen, C.; Ng, T.K.; Ooi, B.S.; Khan, M.Z.M. Blue laser diode system with an enhanced wavelength tuning range. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Lin, G.-R.; Wang, H.-L.; Lin, G.-C.; Huang, Y.-H.; Lin, Y.-H.; Cheng, T.-K. Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system. J. Light. Technol. 2009, 27, 2779–2785. [Google Scholar]
- Lin, G.-R.; Cheng, T.-K.; Lin, Y.-H.; Lin, G.-C.; Wang, H.-L. A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances. J. Light. Technol. 2010, 28, 1349–1355. [Google Scholar]
- Chen, M.-H.; Hsiao, S.-C.; Shen, K.-T.; Tsai, C.-C.; Chui, H.-C. Single longitudinal mode external cavity blue InGaN diode laser. Opt. Laser Technol. 2019, 116, 68–71. [Google Scholar] [CrossRef]
- Donvalkar, P.S.; Savchenkov, A.; Matsko, A. Self-injection locked blue laser. J. Opt. 2018, 20, 045801. [Google Scholar] [CrossRef]
- Demir, V.; Akbulut, M.; Nguyen, D.; Kaneda, Y.; Neifeld, M.; Peyghambarian, N. Injection-locked, single frequency, multi-core Yb-doped phosphate fiber laser. Sci. Rep. 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Spirin, V.V.; Escobedo, J.L.B.; Korobko, D.A.; Mégret, P.; Fotiadi, A.A. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt. Express 2020, 28, 478–484. [Google Scholar] [CrossRef]
- Chien, J.-C.; Niknejad, A.M. Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy. IEEE J. Solid-State Circuits 2015, 51, 457–472. [Google Scholar] [CrossRef]
- Xi, Y.; Li, X.; Huang, W.-P. Standing-wave model based on modes of cold cavity for simulation of laser diodes. In Integrated Photonics and Nanophotonics Research and Applications; Optica Publishing Group: Washington, DC, USA, 2007; p. ITuF3. [Google Scholar]
- Guo, J.; Jia, K.; Wang, X.; Huang, S.-W.; Zhao, G.; Xie, Z.; Zhu, S.-N. Single-frequency Brillouin lasing based on a birefringent fiber Fabry–Pérot cavity. Appl. Phys. Lett. 2022, 120, 091102. [Google Scholar] [CrossRef]
- McNeil, J.R.; Barron, A.C.; Wilson, S.; Herrmann, W.C. Ion-assisted deposition of optical thin films: Low energy vs high energy bombardment. Appl. Opt. 1984, 23, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Fee, M.S.; Danzmann, K.; Chu, S. Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy. Phys. Rev. A 1992, 45, 4911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, P.; Xu, P.; Liu, H.-Y.; Shang, M.; Xie, Z.; Zhu, S. A Compact Self-Injection-Locked Narrow-Linewidth Diode Laser with Narrowband Dielectric Filter. Appl. Sci. 2023, 13, 4765. https://doi.org/10.3390/app13084765
Fan P, Xu P, Liu H-Y, Shang M, Xie Z, Zhu S. A Compact Self-Injection-Locked Narrow-Linewidth Diode Laser with Narrowband Dielectric Filter. Applied Sciences. 2023; 13(8):4765. https://doi.org/10.3390/app13084765
Chicago/Turabian StyleFan, Pengfei, Peng Xu, Hua-Ying Liu, Minghao Shang, Zhenda Xie, and Shining Zhu. 2023. "A Compact Self-Injection-Locked Narrow-Linewidth Diode Laser with Narrowband Dielectric Filter" Applied Sciences 13, no. 8: 4765. https://doi.org/10.3390/app13084765
APA StyleFan, P., Xu, P., Liu, H. -Y., Shang, M., Xie, Z., & Zhu, S. (2023). A Compact Self-Injection-Locked Narrow-Linewidth Diode Laser with Narrowband Dielectric Filter. Applied Sciences, 13(8), 4765. https://doi.org/10.3390/app13084765