Turbidity and COD Removal from Municipal Wastewater Using a TiO2 Photocatalyst—A Comparative Study of UV and Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. Effluent Sample and Analytical Methods
2.2.1. Effluent Sample
2.2.2. Analytical Methods
2.3. Experimental Setup
2.4. Response Surface Methodology (RSM)
3. Results and Discussion
3.1. Characterization of Municipal Wastewater
3.2. Effect of Reaction Time on Photocatalysis Treatment
3.3. Effect of Mixing Speed on Photocatalysis Treatment
3.4. Effect of Catalyst Load on Photocatalysis Treatment
3.5. Previous Similar Work
3.6. Response Surface Modelling and Optimization
3.6.1. Turbidity
3.6.2. COD
3.6.3. Optimization Using RSM
3.6.4. Validation of Optimized Conditions
3.7. Comparative Study between UV and Vis Light
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- du Plessis, A. South Africa’s Impending Water Crises: Transforming Water Crises into Opportunities and the Way Forward. In South Africa’s Water Predicament: Freshwater’s Unceasing Decline; Springer: Berlin/Heidelberg, Germany, 2023; pp. 143–170. [Google Scholar]
- Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef] [Green Version]
- Kretzmann, S. Municipalities Are Failing to Provide Clean Water. Citizens Are Stepping in to Fix the Problem. Available online: https://www.groundup.org.za/article/water-in-two-thirds-municipalities-does-not-meet-minimum-standards/ (accessed on 6 March 2023).
- Toxopeüs, M. Understanding Water Issues and Challenges II: Municipalities and the Delivery of Water Services. Available online: https://hsf.org.za/publications/hsf-briefs/understanding-water-issues-and-challenges-ii-municipalities-and-the-delivery-of-water-services (accessed on 1 December 2022).
- Xaba, N. The Centrality of the Water-Energy-Food Nexus in Navigating South Africa’s Power Crisis. Available online: https://www.dailymaverick.co.za/opinionista/2023-02-27-the-water-energy-food-nexus-and-south-africas-energy-crisis/ (accessed on 10 March 2023).
- Antonopoulou, M.; Papadopoulos, V.; Konstantinou, I. Photocatalytic Oxidation of Treated Municipal Wastewaters for the Removal of Phenolic Compounds: Optimization and Modeling Using Response Surface Methodology (RSM) and Artificial Neural Networks (ANNS). J. Chem. Technol. Biotechnol. 2012, 87, 1385–1395. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H. Recent Developments in Industrial Organic Degradation Via Semiconductor Heterojunctions and the Parameters Affecting the Photocatalytic Process: A Review Study. J. Water Process Eng. 2022, 47, 102671. [Google Scholar] [CrossRef]
- Archer, E.; Wolfaardt, G.M.; Van Wyk, J.H. Pharmaceutical and Personal Care Products (PPCPS) as Endocrine Disrupting Contaminants (EDCS) in South African Surface Waters. Water SA 2017, 43, 684–706. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef] [PubMed]
- Manna, M.; Sen, S. Advanced Oxidation Process: A Sustainable Technology for Treating Refractory Organic Compounds Present in Industrial Wastewater. Environ. Sci. Pollut. Res. 2022, 30, 25477–25505. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Vigneswaran, S.; Moon, I.S. A Review on UV/TiO 2 Photocatalytic Oxidation Process. Korean J. Chem. Eng. 2008, 25, 64–72. [Google Scholar] [CrossRef]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of Pharmaceuticals in Sewage Treatment Plants in Finland. Water Res. 2007, 41, 1001–1012. [Google Scholar] [CrossRef]
- Ben, W.; Qiang, Z.; Pan, X.; Chen, M. Removal of Veterinary Antibiotics from Sequencing Batch Reactor (SBR) Pretreated Swine Wastewater by Fenton’s Reagent. Water Res. 2009, 43, 4392–4402. [Google Scholar] [CrossRef]
- Okhovat, N.; Hashemi, M.; Golpayegani, A. Photocatalytic Decomposition of Metronidazolein Aqueous Solutions Using Titanium Dioxide Nanoparticles. J. Mater. Environ. Sci. 2015, 6, 792–799. [Google Scholar]
- Tayade, R.J.; Natarajan, T.S.; Bajaj, H.C. Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes. Ind. Eng. Chem. Res. 2009, 48, 10262–10267. [Google Scholar] [CrossRef]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The Photocatalytic Process in the Treatment of Polluted Water. Chem. Pap. 2022, 77, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Chow, C.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology. Water Res. 2010, 44, 2997–3027. [Google Scholar]
- Friedmann, D. A General Overview of Heterogeneous Photocatalysis as a Remediation Technology for Wastewaters Containing Pharmaceutical Compounds. Water 2022, 14, 3588. [Google Scholar] [CrossRef]
- Jallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.; Faria, J.L.; Hentati, O.; Silva, A.M.; Ksibi, M. Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Chiou, C.-H.; Wu, C.-Y.; Juang, R.-S. Influence of Operating Parameters on Photocatalytic Degradation of Phenol in UV/TiO2 Process. Chem. Eng. J. 2008, 139, 322–329. [Google Scholar] [CrossRef]
- Yakout, S. New Efficient Sunlight Photocatalysts Based on Gd, Nb, V and Mn Doped Alpha-Bi2O3 Phase. J. Environ. Chem. Eng. 2020, 8, 103644. [Google Scholar] [CrossRef]
- Zare, E.N.; Iftekhar, S.; Park, Y.; Joseph, J.; Srivastava, V.; Khan, M.A.; Makvandi, P.; Sillanpaa, M.; Varma, R.S. An Overview on Non-Spherical Semiconductors for Heterogeneous Photocatalytic Degradation of Organic Water Contaminants. Chemosphere 2021, 280, 130907. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Bahnemann, D. Photocatalytic Water Treatment: Solar Energy Applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Bhatkhande, D.S.; Kamble, S.P.; Sawant, S.B.; Pangarkar, V.G. Photocatalytic and Photochemical Degradation of Nitrobenzene Using Artificial Ultraviolet Light. Chem. Eng. J. 2004, 102, 283–290. [Google Scholar] [CrossRef]
- Chin, S.S.; Chiang, K.; Fane, A.G. The Stability of Polymeric Membranes in a TiO2 Photocatalysis Process. J. Membr. Sci. 2006, 275, 202–211. [Google Scholar] [CrossRef]
- Ochuma, I.J.; Fishwick, R.P.; Wood, J.; Winterbottom, J.M. Optimisation of Degradation Conditions of 1, 8-Diazabicyclo [5.4. 0] Undec-7-Ene in Water and Reaction Kinetics Analysis Using a Cocurrent Downflow Contactor Photocatalytic Reactor. Appl. Catal. B Environ. 2007, 73, 259–268. [Google Scholar] [CrossRef]
- Shivaraju, H. Removal of Organic Pollutants in the Municipal Sewage Water by TiO2 Based Heterogeneous Photocatalysis. Int. J. Environ. Sci. 2011, 1, 911–923. [Google Scholar]
- Kumar, A.; Pandey, G. The Photocatalytic Degradation of Methyl Green in Presence of Visible Light with Photoactive Ni0. 10: La0. 05: TiO2 Nanocomposites. IOSR J. Appl. Chem. 2017, 10, 31–44. [Google Scholar]
- Farouq, R.; Abd-Elfatah, M.; Ossman, M.E. Response Surface Methodology for Optimization of Photocatalytic Degradation of Aqueous Ammonia. J. Water Supply Res. Technol.–AQUA 2018, 67, 162–175. [Google Scholar] [CrossRef]
- Yin, X.; Xin, F.; Zhang, F.; Wang, S.; Zhang, G. Kinetic Study on Photocatalytic Degradation of 4BS Azo Dye Over TiO2 in Slurry. Environ. Eng. Sci. 2006, 23, 1000–1008. [Google Scholar] [CrossRef]
- Goren, A.Y.; Recepoğlu, Y.K.; Khataee, A. Language of Response Surface Methodology as an Experimental Strategy for Electrochemical Wastewater Treatment Process Optimization. In Artificial Intelligence and Data Science in Environmental Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 57–92. [Google Scholar]
- Das, A.; Adak, M.K.; Mahata, N.; Biswas, B. Wastewater Treatment with the Advent of TiO2 Endowed Photocatalysts and their Reaction Kinetics with Scavenger Effect. J. Mol. Liq. 2021, 338, 116479. [Google Scholar] [CrossRef]
- Sibiya, N.P.; Rathilal, S.; Kweinor Tetteh, E. Coagulation Treatment of Wastewater: Kinetics and Natural Coagulant Evaluation. Molecules 2021, 26, 698. [Google Scholar] [CrossRef]
- Syed, M.A.; Mauriya, A.K.; Shaik, F. Investigation of Epoxy Resin/Nano-TiO2 Composites in Photocatalytic Degradation of Organics Present in Oil-Produced Water. Int. J. Environ. Anal. Chem. 2022, 102, 4518–4534. [Google Scholar] [CrossRef]
- Shankar, D.; Sivakumar, D.; Thiruvengadam, M.; Manojkumar, M. Colour Removal in a Textile Industry Wastewater Using Coconut Coir Pith. Pollut. Res. 2014, 33, 499–503. [Google Scholar]
- Govindaraj, M.; Pattabhi, S. Electrochemical Treatment of Endocrine-Disrupting Chemical from Aqueous Solution. Desalination Water Treat. 2015, 53, 2664–2674. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Jamil, T.S.; Fourie, C.J.; Momba, M.N. UV and Solar Light Photocatalytic Removal of Organic Contaminants in Municipal Wastewater. Sep. Sci. Technol. 2016, 51, 1765–1778. [Google Scholar] [CrossRef]
- Gao, B.; Liu, L.; Liu, J.; Yang, F. Photocatalytic Degradation of 2, 4, 6-Tribromophenol on Fe2O3 or FeOOH Doped ZnIn2S4 Heterostructure: Insight into Degradation Mechanism. Appl. Catal. B Environ. 2014, 147, 929–939. [Google Scholar] [CrossRef]
- Zheng, P.; Pan, Z.; Li, H.; Bai, B.; Guan, W. Effect of Different Type of Scavengers on the Photocatalytic Removal of Copper and Cyanide in the Presence of TiO2 @ Yeast Hybrids. J. Mater. Sci. Mater. Electron. 2015, 26, 6399–6410. [Google Scholar] [CrossRef]
- Chong, M.N.; Cho, Y.J.; Poh, P.E.; Jin, B. Evaluation of Titanium Dioxide Photocatalytic Technology for the Treatment of Reactive Black 5 Dye in Synthetic and Real Greywater Effluents. J. Clean. Prod. 2015, 89, 196–202. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Obotey Ezugbe, E.; Rathilal, S.; Asante-Sackey, D. Removal of COD and SO42− from Oil Refinery Wastewater Using a Photo-Catalytic System—Comparing TiO2 and Zeolite Efficiencies. Water 2020, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Topare, N.S.; Joy, M.; Joshi, R.R.; Jadhav, P.B.; Kshirsagar, L.K. Treatment of Petroleum Industry Wastewater Using TiO2/UV Photocatalytic Process. J. Indian Chem. Soc. 2015, 92, 219–222. [Google Scholar]
- Ghaly, M.Y.; Jamil, T.S.; El-Seesy, I.E.; Souaya, E.R.; Nasr, R.A. Treatment of Highly Polluted Paper Mill Wastewater by Solar Photocatalytic Oxidation with Synthesized Nano TiO2. Chem. Eng. J. 2011, 168, 446–454. [Google Scholar] [CrossRef]
- Madkhali, N.; Prasad, C.; Malkappa, K.; Choi, H.Y.; Govinda, V.; Bahadur, I.; Abumousa, R. Recent Update on Photocatalytic Degradation of Pollutants in Waste Water Using TiO2-Based Heterostructured Materials. Results Eng. 2023, 17, 100920. [Google Scholar] [CrossRef]
Item No | Chemical | Mass Added (g) |
---|---|---|
1 | CaCl2H2O | 1 |
2 | Peptone | 40 |
3 | Glucose | 27.52 |
4 | NaHCO3 | 68.75 |
5 | Urea | 7.52 |
6 | Meat extract | 2.5 |
7 | MgSO4 | 0.5 |
8 | K2HPO4 | 7 |
9 | CuCl2.7H2O | 0.0125 |
10 | NaCl | 2.2 |
Catalyst | Wastewater | Initial Conditions | Removal Efficiency | References |
---|---|---|---|---|
TiO2 | Municipal Sewage | COD: 620 mg/L | 12% 76% 80% pH: 7.1 | This work |
Colour: 878 Pt.Co | ||||
Turbidity: 365 NTU | ||||
pH: 6.85 | ||||
Cat. Loading: 0.1 g/L | ||||
Reaction time 150 min | ||||
TiO2 | Real greywater | COD: 620 mg/L | 54% pH: 4.45 | [41] |
pH: 5 | ||||
Cat. Loading: 0.1 g/L | ||||
Reaction time 150 min | ||||
TiO2 | Petroleum refinery | COD: 1226 mg/L | 92% | [42] |
pH: 8 | ||||
Cat. Loading: 1.5 g/L | ||||
Reaction time: 150 min | ||||
TiO2 | Petroleum refinery | COD: 8200 mg/L | 60% | [43] |
pH: 4.5 | ||||
Cat. Loading: 1 g/L | ||||
TiO2 | Paper mill | COD: 2075 mg/L | 75% | [44] |
pH: 6.5 | ||||
Cat. Loading: 0.75 g/L | ||||
Reaction time 180 min | ||||
TiO2/calcium aluminosilicate | Municipal Sewage | COD: 2487 mg/L | 94% | [28] |
pH: 6.5 | ||||
Cat. Loading: 0.75 g/L | ||||
Reaction time: 180 min |
Factor 1 | Factor 2 | Response 1 | Response 2 | ||
---|---|---|---|---|---|
Std | Run | A: Catalyst Load (g/L) | B: Reaction Time (min) | Turbidity Removal (%) | COD Removal (%) |
4 | 1 | 0.6 | 40 | 95.46 | 42.41 |
3 | 2 | 0.3 | 40 | 96.99 | 4.02 |
13 | 3 | 0.45 | 30 | 79.5 | 23.45 |
8 | 4 | 0.45 | 40 | 86.56 | 21.38 |
10 | 5 | 0.45 | 30 | 85.96 | 31.95 |
12 | 6 | 0.45 | 30 | 85.99 | 44.25 |
11 | 7 | 0.45 | 30 | 93.91 | 46.44 |
1 | 8 | 0.3 | 20 | 99.14 | 1.84 |
6 | 9 | 0.6 | 30 | 99.24 | 26.55 |
7 | 10 | 0.45 | 20 | 85.77 | 31.03 |
9 | 11 | 0.45 | 30 | 87.79 | 52.64 |
2 | 12 | 0.6 | 20 | 96.15 | 25.63 |
5 | 13 | 0.3 | 30 | 97.92 | 3.1 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | |
---|---|---|---|---|---|
Linear | 0.9766 | 0.1954 | −0.1943 | −0.7432 | |
2FI | 0.9246 | 0.1536 | −0.3256 | −2.0736 | |
Quadratic | 0.0053 | 0.9639 | 0.6196 | 0.5647 | Suggested |
Cubic | 0.8744 | 0.8583 | 0.4952 | 0.4763 | Aliased |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 395.84 | 5 | 79.17 | 4.91 | 0.0301 | significant |
A-Catalyst load | 1.71 | 1 | 1.71 | 0.1058 | 0.7545 | |
B-Reaction time | 0.7004 | 1 | 0.7004 | 0.0434 | 0.8409 | |
AB | 0.5329 | 1 | 0.5329 | 0.0330 | 0.8609 | |
A2 | 357.70 | 1 | 357.70 | 22.18 | 0.0022 | |
B2 | 2.96 | 1 | 2.96 | 0.1833 | 0.6814 | |
Residual | 112.90 | 7 | 16.13 | |||
Lack of Fit | 6.86 | 3 | 2.29 | 0.0863 | 0.9639 | |
Pure Error | 106.04 | 4 | 26.51 | |||
Cor Total | 508.74 | 12 | not significant | |||
R2 0.7781 | Adjusted R2 0.6196 | C.V.% 4.39 | Predicted R2 0.5647 | Adeq. Pr 4.8711 | Mean 91.57 | SD 4.02 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | |
---|---|---|---|---|---|
Linear | 0.1033 | 0.2772 | 0.2379 | −0.0206 | |
2FI | 0.6440 | 0.2311 | 0.1742 | −0.5861 | |
Quadratic | 0.0522 | 0.5445 | 0.5432 | −0.0752 | Suggested |
Cubic | 0.6532 | 0.2932 | 0.4607 | −6.2294 | Aliased |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2356.51 | 3 | 785.50 | 6.85 | 0.0106 | significant |
A-Catalyst load | 1222.08 | 1 | 1222.08 | 10.66 | 0.0098 | |
B-Reaction time | 14.45 | 1 | 14.45 | 0.1260 | 0.7308 | |
A2 | 1119.98 | 1 | 1119.98 | 9.77 | 0.0122 | |
Residual | 1032.12 | 9 | 114.68 | |||
Lack of Fit | 474.44 | 5 | 94.89 | 0.6806 | 0.6632 | not significant |
Pure Error | 557.69 | 4 | 139.42 | |||
Cor Total | 3388.63 | 12 | ||||
R2 0.6954 | Adjusted R2 0.5939 | C.V.% 39.25 | Predicted R2 0.4378 | Adeq. Pr 6.0593 | Mean 27.28 | SD 10.71 |
Name | Goal | Lower Limit | Upper Limit | Lower Weight | Upper Weight | Importance |
---|---|---|---|---|---|---|
A: Catalyst load | maximize | 0.3 | 0.6 | 1 | 1 | 3 |
B: Reaction time | maximize | 20 | 40 | 1 | 1 | 3 |
Turbidity | maximize | 79.5 | 99.24 | 1 | 1 | 3 |
COD | maximize | 1.84 | 52.64 | 1 | 1 | 3 |
Number | Catalyst Load | Reaction Time | Turbidity | COD | Desirability | Desirability (w/o Intervals) | |
---|---|---|---|---|---|---|---|
1 | 0.600 | 40.000 | 96.628 | 33.082 | 0.747 | 0.855 | Selected |
2 | 0.600 | 39.580 | 96.712 | 33.017 | 0.746 | 0.851 | |
3 | 0.598 | 40.000 | 96.380 | 33.334 | 0.746 | 0.852 | |
4 | 0.600 | 39.387 | 96.750 | 32.987 | 0.745 | 0.849 | |
5 | 0.600 | 38.327 | 96.942 | 32.822 | 0.741 | 0.838 | |
6 | 0.586 | 40.000 | 94.622 | 35.060 | 0.734 | 0.831 | |
7 | 0.600 | 36.449 | 97.224 | 32.531 | 0.727 | 0.817 | |
8 | 0.600 | 34.317 | 97.457 | 32.200 | 0.706 | 0.790 |
Response | Predicted | Actual | Difference |
---|---|---|---|
Turbidity (%) | 96.63 | 95.17 | 1.46 |
COD (%) | 33.08 | 32.64 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munien, C.; Kweinor Tetteh, E.; Govender, T.; Jairajh, S.; Mguni, L.L.; Rathilal, S. Turbidity and COD Removal from Municipal Wastewater Using a TiO2 Photocatalyst—A Comparative Study of UV and Visible Light. Appl. Sci. 2023, 13, 4766. https://doi.org/10.3390/app13084766
Munien C, Kweinor Tetteh E, Govender T, Jairajh S, Mguni LL, Rathilal S. Turbidity and COD Removal from Municipal Wastewater Using a TiO2 Photocatalyst—A Comparative Study of UV and Visible Light. Applied Sciences. 2023; 13(8):4766. https://doi.org/10.3390/app13084766
Chicago/Turabian StyleMunien, Caressa, Emmanuel Kweinor Tetteh, Timaine Govender, Shivek Jairajh, Liberty L. Mguni, and Sudesh Rathilal. 2023. "Turbidity and COD Removal from Municipal Wastewater Using a TiO2 Photocatalyst—A Comparative Study of UV and Visible Light" Applied Sciences 13, no. 8: 4766. https://doi.org/10.3390/app13084766
APA StyleMunien, C., Kweinor Tetteh, E., Govender, T., Jairajh, S., Mguni, L. L., & Rathilal, S. (2023). Turbidity and COD Removal from Municipal Wastewater Using a TiO2 Photocatalyst—A Comparative Study of UV and Visible Light. Applied Sciences, 13(8), 4766. https://doi.org/10.3390/app13084766