An Efficient Spring Model for an Integrated Orthodontic Tooth Movement: A Verified Mathematical Model
Abstract
:1. Introduction
2. The Orthodontic Mathematical Model
2.1. Instantaneous Behavior of the PDL
PDL Compression Constraints
2.2. Remodeling Process
2.3. The Combined Orthodontic Process
Algorithm 1: Tooth orthodontic movement pseudo-code |
While Appliance connected do |
If Orthodontic force—PDL springs not in equilibrium (threshold) then |
Apply tooth movement |
else if PDL springs not in equilibrium(threshold) |
Apply remodeling |
else |
break loop |
end if |
if reached required movement then |
Disconnect appliance (loop ends) |
end if |
end while |
3. Results
3.1. Validation
Intermediate Movement
3.2. Remodeling Induced Movement
- Patient 1: Upper right canine—Clinical observed rotation: 6.88 [deg], Model observed rotation: 5.46 [deg], resulting in 1.42 [deg] of difference.
- Patient 1: Upper left canine—Clinical observed rotation: 2.61 [deg], Model observed rotation: 3.98 [deg], resulting in 1.37 [deg] of difference.
- Patient 2: Upper right canine—Clinical observed rotation: 4.01 [deg], Model observed rotation: 6.62 [deg], resulting in 2.21 [deg] of difference.
- Patient 2: Upper left canine—As the image taken did not allow accurate measuring of the rotation, we compared the orthodontic anchorage vertical Z-axis movement to measure our model’s accuracy, which was measured at 0.1 [mm] in the clinical case, whereas in our numeric model, 0.31 [mm] was measured.
4. Discussion and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cattaneo, P.M.; Dalstra, M.; Melsen, B. The finite element method: A tool to study orthodontic tooth movement. J. Dent. Res. 2005, 84, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Abraha, H.M.; Iriarte-Diaz, J.; Ross, C.F.; Taylor, A.B.; Panagiotopoulou, O. The mechanical effect of the periodontal ligament on bone strain regimes in a validated finite element model of a macaque mandible. Front. Bioeng. Biotechnol. 2019, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Adachi, T.; Takano-Yamamoto, T. Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Fill, T.S.; Carey, J.P.; Toogood, R.W.; Major, P.W. Experimentally determined mechanical properties of, and models for, the periodontal ligament: Critical review of current literature. J. Dent. Biomech. 2011, 2, 312980. [Google Scholar] [CrossRef] [PubMed]
- Ferlias, N.; Dalstra, M.; Cornelis, M.A.; Cattaneo, P.M. In Vitro Comparison of Different Invisalign® and 3Shape® Attachment Shapes to Control Premolar Rotation. Front. Bioeng. Biotechnol. 2022, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kong, D.; Tang, T.; Di Su, D.; Yang, P.; Wang, H.; Zhao, Z.; Liu, Y. Orthodontic treatment planning based on artificial neural networks. Sci. Rep. 2019, 9, 2037. [Google Scholar] [CrossRef] [PubMed]
- Shroff, B. Biology of Orthodontic Tooth Movement: Current Concepts and Applications in Orthodontic Practice; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Roberts, W.E.; Viecilli, R.F.; Chang, C.; Katona, T.R.; Paydar, N.H. Biology of biomechanics: Finite element analysis of a statically determinate system to rotate the occlusal plane for correction of a skeletal Class III open-bite malocclusion. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Provatidis, C.G. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Med. Eng. Phys. 2000, 22, 359–370. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study. J. Oral Biol. Craniofacial Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
- Likitmongkolsakul, U.; Smithmaitrie, P.; Samruajbenjakun, B.; Aksornmuang, J. Development and validation of 3D finite element models for prediction of orthodontic tooth movement. Int. J. Dent. 2018, 2018, 4927503. [Google Scholar] [CrossRef]
- Field, C.; Ichim, I.; Swain, M.V.; Chan, E.; Darendeliler, M.A.; Li, W.; Li, Q. Mechanical responses to orthodontic loading: A 3-dimensional finite element multi-tooth model. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Van Schepdael, A.; Sloten, J.V.; Geris, L. A mechanobiological model of orthodontic tooth movement. Biomech. Model. Mechanobiol. 2013, 12, 249–265. [Google Scholar] [CrossRef]
- Geramy, A. Initial stress produced in the periodontal membrane by orthodontic loads in the presence of varying loss of alveolar bone: A three-dimensional finite element analysis. Eur. J. Orthod. 2002, 24, 21–33. [Google Scholar] [CrossRef]
- Hemanth, M.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Kabbur, K.J.; Vedavathi, B.; Chaithra, D. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I. J. Contemp. Dent. Pract. 2015, 16, 740–743. [Google Scholar] [PubMed]
- Dorow, C.; Krstin, N.; Sander, F.-G. Determination of the mechanical properties of the periodontal ligament in a uniaxial tensional experiment. J. Orofac. Orthop./Fortschr. Der Kieferorthopädie 2003, 64, 100–107. [Google Scholar] [CrossRef]
- Ferguson, D.J.; Wilcko, M.T. Tooth movement mechanobiology: Toward a unifying concept. In Biology of Orthodontic Tooth Movement; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–44. [Google Scholar]
- Wu, J.; Liu, Y.; Wang, D.; Zhang, J.; Dong, X.; Jiang, X.; Xu, X. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1294–1302. [Google Scholar] [CrossRef]
- Zeno, K.G.; Mustapha, S.; Ayoub, G.; Ghafari, J.G. Effect of force direction and tooth angulation during traction of palatally impacted canines: A finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Burstone, C.J. The biomechanics of tooth movement. Vistas Orthod. 1962, 197–213. [Google Scholar] [CrossRef]
- Ren, Y.; Maltha, J.C.; Kuijpers-Jagtman, A.M. Optimum force magnitude for orthodontic tooth movement: A systematic literature review. Angle Orthod. 2003, 73, 86–92. [Google Scholar]
- Lee, B.W. Relationship between Tooth-Movement Rate and Estimated Pressure Applied. J. Dent. Res. 1965, 44, 1053. [Google Scholar] [CrossRef]
- Lee, B.W. The force requirements for tooth movement Part III: The pressure hypothesis tested. Aust. Orthod. J. 1996, 14, 93–97. [Google Scholar]
- Hsu, M.L.; Chung, T.F.; Kao, H.C. Clinical applications of angled abutments-a literature review. Chin. Dent. J. 2005, 24, 15. [Google Scholar]
- Turner, C.H.; Warden, S.J.; Bellido, T.; Plotkin, L.I.; Kumar, N.; Jasiuk, I.; Danzig, J.; Robling, A.G. Mechanobiology of the skeleton. Sci. Signal. 2009, 2, pt3. [Google Scholar]
- McCormack, S.W.; Witzel, U.; Watson, P.J.; Fagan, M.J.; Gröning, F. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement. PLoS ONE 2014, 9, e102387. [Google Scholar] [CrossRef]
- Phannurat, P.; Tharanon, W.; Sinthanayothin, C. Simulation of surface mesh deformation in orthodontics by mass-spring model. ECTI Trans. Electr. Eng. Electron. Commun. 2011, 9, 292–296. [Google Scholar]
- Dot, G.; Licha, R.; Goussard, F.; Sansalone, V. A new protocol to accurately track long–term orthodontic tooth movement. J. Biomech. 2021, 129, 9. [Google Scholar] [CrossRef]
- Limbert, G.; Middleton, J.; Laizans, J.; Dobelis, M.; Knets, I. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Comput. Methods Biomech. Biomed. Eng. 2003, 6, 337–345. [Google Scholar] [CrossRef]
- Bourauel, C.; Freudenreich, D.; Vollmer, D.; Kobe, D.; Drescher, D.; Jager, A. Simulation of Orthodontic Tooth Movements. J. Orofac. Orthop. 1998, 60, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Provatidis, C.G. A Bone-remodelling Scheme Based on Principal Strains Applied to a Tooth During Translation. Comput. Methods Biomech. Biomed. Eng. 2003, 6, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Weissheimer, A.; Pham, J.; Go, L.; de Menezes, L.M.; Redmon, W.R.; Loos, J.F.; Sameshima, G.T.; Tong, H. Three-dimensional monitoring of root movement. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 132–142. [Google Scholar] [CrossRef]
- Bouton, A.; Simon, Y.; Goussard, F.; Teresi, L.; Sansalone, V. New finite element study protocol: Clinical simulation of orthodontic tooth movement. Int. Orthod. 2017, 15, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, M.; Jin, S.; Wang, Y.; Luo, R.; Huo, B.; Liu, D.; He, D.; Zhou, Y.; Liu, Y. Stress distribution and collagen remodeling of periodontal ligament during orthodontic tooth movement. Front. Pharmacol. 2019, 10, 1263. [Google Scholar] [CrossRef]
- Luchian, I.; Martu, M.-A.; Tatarciuc, M.; Scutariu, M.M.; Ioanid, N.; Pasarin, L.; Kappenberg-Nitescu, D.C.; Sioustis, I.-A.; Solomon, S.M. Using fem to assess the effect of orthodontic forces on affected periodontium. Appl. Sci. 2021, 11, 7183. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Li, B.; Wang, D.; Dong, X.; Zhou, J. Effects of different alveolar bone finite element models on the biomechanical responses of periodontal ligament. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J. Biomed. Eng. = Shengwu Yixue Gongchengxue Zazhi 2021, 38, 295–302. [Google Scholar]
- Dance, D.R.; Christofides, S.; Maidment, A.D.A.; McLean, I.D.; Ng, K.H. Diagnostic Radiology Physics: A Handbook for Teachers and Students; American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics: Utrecht, The Netherlands, 2014. [Google Scholar]
- Pauwels, R.; Jacobs, R.; Singer, S.R.; Mupparapu, M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofacial Radiol. 2015, 44, 20140238. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.S.; Jacobsen, P.H. Elastic modulus of the periodontal ligament. Biomaterials 1997, 18, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Coolidge, E.D. The thickness of the human periodontal membrane. J. Am. Dent. Assoc. Dent. Cosm. 1937, 24, 1260–1270. [Google Scholar] [CrossRef]
- Jee, W.S. Principles in bone physiology. J. Musculoskelet Neuronal Interact 2000, 1, 11–13. [Google Scholar] [PubMed]
- Chen, J.; Li, W.; Swain, M.V.; Darendeliler, M.A.; Li, Q. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J. Biomech. 2014, 47, 1689–1695. [Google Scholar] [CrossRef]
- Tanaka, E.; Inubushi, T.; Koolstra, J.H.; van Eijden, T.M.G.J.; Sano, R.; Takahashi, K.; Kawai, N.; Rego, E.B.; Tanne, K. Comparison of dynamic shear properties of the porcine molar and incisor periodontal ligament. Ann. Biomed. Eng. 2006, 34, 1917–1923. [Google Scholar] [CrossRef]
- Hibbeler, R. Mechanics Of Materials. In Mechanics Of Materials; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Medina, O.; Shapiro, A.; Shvalb, N. Minimal actuation for a flat actuated flexible manifold. IEEE Trans. Robot. 2016, 32, 698–706. [Google Scholar] [CrossRef]
- Shvalb, N.; Moshe, B.B.; Medina, O. A real-time motion planning algorithm for a hyper-redundant set of mechanisms. Robot. 2013, 31, 1327–1335. [Google Scholar] [CrossRef]
- Jones, R.M. Deformation Theory of Plasticity; Bull Ridge Corporation: Blacksburg, VA, USA, 2009; p. 151. [Google Scholar]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- arrow3 MATLAB Central File Exchange. 2023. Available online: https://ww2.mathworks.cn/matlabcentral/fileexchange/14056-arrow3 (accessed on 15 February 2023).
- Jepsen, A. Root surface measurement and a method for x-ray determination of root surface area. Acta Odontol. Scand. 1963, 21, 35–46. [Google Scholar] [CrossRef]
- Hwang, C.-J.; Cha, J.-Y. Mechanical and biological comparison of latex and silicone rubber bands. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, K.; Li, B. Research on path planning for tooth movement based on genetic algorithms. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 1, pp. 421–424. [Google Scholar]
- Sfondrini, M.F.; Gandini, P.; Alcozer, R.; Vallittu, P.K.; Scribante, A. Failure load and stress analysis of orthodontic miniscrews with different transmucosal collar diameter. J. Mech. Behav. Biomed. Mater. 2018, 87, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Kim, G.-T.; Kwon, J.-S.; Choi, S.-H. Effects of intrabony length and cortical bone density on the primary stability of orthodontic miniscrews. Materials 2020, 13, 5615. [Google Scholar] [CrossRef]
Citation | PDL Young Modulus [MPa] | PDL Poisson Ratio |
---|---|---|
[2,9,10,11,13,14,15] | 0.66–0.69 | 0.45–0.49 |
[12] | 1.18 | 0.45 |
[39] | 44 | 0.49 |
[42] | - | 0.45 |
[8] | 0.5 | - |
[35] | 0.71 | 0.4 |
[3] | 0.17 | 0.4 |
[43] | 0.1–0.3 (shear modulus) | - |
Tooth & Resolution | Canine 1662 [SD] | Canine 830 [SD] | Molar 1708 [SD] | Molar 854 [SD] | |
---|---|---|---|---|---|
Movement Type | |||||
Instantaneous movement | 0.006 | 0.0096 | 0.0064 | 0.0104 | |
0.5 mm movement | 0.0055 | 0.0102 | 0.0064 | 0.0090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yona, S.; Medina, O.; Sarig, R.; Shvalb, N. An Efficient Spring Model for an Integrated Orthodontic Tooth Movement: A Verified Mathematical Model. Appl. Sci. 2023, 13, 5013. https://doi.org/10.3390/app13085013
Yona S, Medina O, Sarig R, Shvalb N. An Efficient Spring Model for an Integrated Orthodontic Tooth Movement: A Verified Mathematical Model. Applied Sciences. 2023; 13(8):5013. https://doi.org/10.3390/app13085013
Chicago/Turabian StyleYona, Shai, Oded Medina, Rachel Sarig, and Nir Shvalb. 2023. "An Efficient Spring Model for an Integrated Orthodontic Tooth Movement: A Verified Mathematical Model" Applied Sciences 13, no. 8: 5013. https://doi.org/10.3390/app13085013
APA StyleYona, S., Medina, O., Sarig, R., & Shvalb, N. (2023). An Efficient Spring Model for an Integrated Orthodontic Tooth Movement: A Verified Mathematical Model. Applied Sciences, 13(8), 5013. https://doi.org/10.3390/app13085013