Origin of the Ultra-Deep Hydrocarbons from the Shunbei No. 1 Fracture Zone in the North of Shuntuoguole Low Uplift, Tarim Basin, North-Western China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Bulk Properties and Molecular Isotopic Compositions of Hydrocarbons
4.2. n-Alkanes and Isoprenoids, Light Hydrocarbons, and Diamondoids
4.3. Saturated and Aromatic Hydrocarbon Compositions
5. Discussion
5.1. Maturity Assessment of Crude Oils
Well | MCH | nC7 | ƩDMCP | ICH | IMCH | I | H | K1 | nC7/MCH | TOL/nC7 |
---|---|---|---|---|---|---|---|---|---|---|
S1-3 | 31.69 | 55.76 | 12.55 | 21.43 | 32.22 | 2.40 | 41.19 | 1.03 | 1.76 | 0.35 |
S1-18 | 29.21 | 56.80 | 13.98 | 16.85 | 29.77 | 2.53 | 39.98 | 1.04 | 1.94 | 0.29 |
S1-7 | 29.99 | 56.29 | 13.72 | 18.64 | 30.50 | 2.42 | 40.20 | 1.03 | 1.88 | 0.31 |
S1-20 | 31.33 | 54.87 | 13.81 | 19.28 | 31.89 | 2.34 | 39.34 | 1.03 | 1.75 | 0.33 |
S1-1 | 31.18 | 54.56 | 14.26 | 18.34 | 31.76 | 2.32 | 38.71 | 1.03 | 1.75 | 0.31 |
S1-5 | 32.30 | 54.16 | 13.54 | 20.82 | 32.87 | 2.26 | 39.38 | 1.01 | 1.68 | 0.30 |
S1-11 | 28.68 | 57.47 | 13.86 | 17.18 | 29.21 | 2.48 | 40.84 | 1.02 | 2.00 | 0.24 |
S1-14 | 33.72 | 51.15 | 15.14 | 22.53 | 34.35 | 2.02 | 36.56 | 1.03 | 1.52 | 0.20 |
S1-15 | 31.05 | 54.91 | 14.04 | 18.68 | 31.61 | 2.30 | 39.32 | 1.01 | 1.77 | 0.27 |
S1-16 | 30.91 | 55.12 | 13.98 | 17.96 | 31.46 | 2.37 | 39.16 | 1.01 | 1.78 | 0.26 |
S1-9 | 31.91 | 54.73 | 13.36 | 20.49 | 32.45 | 2.35 | 39.54 | 1.02 | 1.72 | 0.35 |
SP3 | 32.53 | 53.18 | 14.29 | 19.40 | 33.16 | 2.28 | 37.55 | 1.03 | 1.63 | 0.34 |
SL1 | 30.96 | 54.97 | 14.07 | 20.26 | 31.49 | 2.09 | 39.97 | 1.01 | 1.78 | 0.22 |
5.2. Alteration Processes of Hydrocarbons
5.3. The Origin and Possible Migration Paths of Hydrocarbons
6. Conclusions
- The predominance of low molecular weight n-alkanes, the absence of odd–even dominance, and the predominance of C20 TTs, rather than C23 TTs, along with the dominance of C21 pregnanes all show that the studied oils in the F1 zone are at a high maturity stage. The average equivalent vitrinite reflectance (Rc) of these oils, as estimated from light hydrocarbons (H versus I), MDI, DNR, and MDR, is in the vicinity of 1.50%, which indicates that most of the oils are in the late stage of crossing the oil window. In addition, the crude oils in the southwestern region of the F1 area (S1-11–S1-16) are slightly more mature than those in the northeastern region of the F1 and the well, SL1, far from the No. 1 main fault zone. The two maturity grades (1.06–1.25% and 1.36–1.67%) of the oil samples suggest the presence of at least two stages of hydrocarbon charge, with the late-stage charge predominating. Moreover, the natural gas in this study is dominated by kerogen cracking gas, with trace amounts of wet gas from the early stages of oil cracking, based on the gas compositions and component carbon isotopes.
- This paper mainly investigates the secondary alteration effects of hydrocarbons in terms of biodegradation, thermochemical sulfate reduction, thermal cracking, and evaporative fractionation. The indicators of various geochemical parameters show the significant alteration processes of hydrocarbons to be limited, suggesting favorable preservation conditions in the study region.
- On the basis of biomarker parameters, light hydrocarbons, and carbon isotope compositions, all findings suggest that these oils belong to the same source kitchen of a reduced marine sedimentary environment with mixed organic matter formed of benthic and planktonic algae. The oil–oil correlation analyses suggest that the oil samples are probably derived from the in situ Lower Cambrian Yuertusi formation source rocks. Additionally, according to the distribution of crude oil maturity and natural gas drying coefficient in the study area, it can be inferred that the hydrocarbons in this study area mainly migrate vertically from the in situ Lower Cambrian Yuertusi formation source rocks to the Ordovician reservoirs, followed by a certain degree of lateral migration from southwest to northeast along the Shunbei No. 1 fault zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, G.; Zhu, Y.; Zheng, J.; Yu, G.; NI, X.; Yan, L.; Tian, L.; Huang, L. Tectonic-lithofacies paleogeography, large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation, Tarim Basin, NW China. Pet. Explor. Dev. 2021, 48, 1289–1303. [Google Scholar] [CrossRef]
- Li, J.; Tao, X.; Bai, B.; Huang, S.; Jiang, Q.; Zhao, Z.; Chen, Y.; Ma, D.; Zhang, L.; Li, N.; et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Pet. Explor. Dev. 2021, 48, 60–79. [Google Scholar] [CrossRef]
- Bai, G.; Cao, B. Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil Gas Geol. 2014, 35, 19–25. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L.; Zou, C.; Zhu, R.; Zhang, Y.; Zhang, S.; Zhang, B.; Zhu, G.; Gao, Z. Formation, distribution and potential of deep hydrocarbon resources in China. Pet. Explor. Dev. 2013, 40, 687–695. [Google Scholar] [CrossRef]
- Zhang, S.; Su, J.; Zhang, B.; Wang, X.; He, K. Genetic mechanism and controling factors of ddeep marine light oil and condensate oil in tarim basin. Acta Pet. Sin. 2021, 42, 1566–1580. [Google Scholar] [CrossRef]
- Hu, A.C.; Niu, D.; Wang, H.; Li, T.Y.; Xu, P. The characteristics and fromation mechanism of condensation oil and gas in bozhong 19-6 structure, bozhong sag, bohai bay basin. Acta Pet. Sin. 2020, 41, 403–411. (In Chinese) [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Hao, A.; Shi, Z.; Zhang, B.; Hao, B.; Qi, X.; Chen, B.; Xue, L.; Ma, L.; et al. Geochemical characteristics and genesis of deep marine carbonate natural gas in China. Carbonates Evaporites 2021, 36, 1–15. [Google Scholar] [CrossRef]
- Chai, Z.; Chen, Z. Biomarkers, light hydrocarbons, and diamondoids of petroleum in deep reservoirs of the southeast Tabei Uplift, Tarim Basin: Implication for its origin, alteration, and charging direction. Mar. Pet. Geol. 2023, 147, 106019. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, X.; Yun, L.; Li, Z.; Li, H.; Deng, S.; Zhao, P. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 1–20. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z.; Yi, S.; Lin, S.; Gao, Y.; Huang, F.; She, Y.; Qiao, R. Origin and accumulation mechanisms of deep paleozoic oil and gas: A case study of the central Tarim basin, western China. J. Pet. Sci. Eng. 2022, 208, 109634. [Google Scholar] [CrossRef]
- Zhu, G.; Milkov, A.V.; Li, J.; Xue, N.; Chen, Y.; Hu, J.; Li, T.; Zhang, Z.; Chen, Z. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China. J. Pet. Sci. Eng. 2021, 199, 108246. [Google Scholar] [CrossRef]
- GU, Y.; Wan, Y.; Huang, J.; Zhuang, X.; Wang, B.; Li, M. Prospects for ultra-deep oil and gas in the “deep burial and high pressure” tarim basin. Pet. Geol. Exp. 2019, 41, 157–164. (In Chinese) [Google Scholar] [CrossRef]
- Jiao, F. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in shunbei area, tarim basin. Oil Gas Geol. 2018, 39, 0207–0210. (In Chinese) [Google Scholar] [CrossRef]
- Qi, L. Structural characteristics and storage control function of the Shun I fault zone in the Shunbei region, Tarim Basin. J. Pet. Sci. Eng. 2021, 203, 1–15. [Google Scholar] [CrossRef]
- Yang, P.; Liu, K.; Liu, J.; Yu, S.; Yu, B.; Hou, M.; Wu, L. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole Low Uplift, Tarim Basin, west China. Mar. Pet. Geol. 2021, 128, 105063. [Google Scholar] [CrossRef]
- Wu, L.; Jin, Z.; Liu, K.; Chu, Z.; Yang, P. Evolution of a deeply-buried oil reservoir in the north Shuntuoguole Low Uplift, Tarim Basin, western China: Insights from molecular geochemistry and Re–Os geochronology. Mar. Pet. Geol. 2021, 134, 105365. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, F.; Cao, Z.; Tian, J.; Cong, F. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei field, Tarim Basin, China: Implications on alteration and mixing. Mar. Pet. Geol. 2021, 123, 104725. [Google Scholar] [CrossRef]
- Chen, Z.; Chai, Z.; Cheng, B.; Liu, H.; Cao, Y.; Cao, Z.; Qu, J. Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance: A case study on Shuntuoguole low uplift, Tarim Basin, western China. AAPG Bull. 2021, 105, 65–107. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, H.; Cao, Z.; Wu, X.; Chen, Z. Origin of deep oil accumulations in carbonate reservoirs within the north Tarim Basin: Insights from molecular and isotopic compositions. Org. Geochem. 2020, 139, 1–15. [Google Scholar] [CrossRef]
- Chai, Z.; Chen, Z.; Liu, H.; Cao, Z.; Cheng, B.; Wu, Z.; Qu, J. Light hydrocarbons and diamondoids of light oils in deep reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the evaluation on thermal maturity, secondary alteration and source characteristics. Mar. Pet. Geol. 2020, 117, 1–18. [Google Scholar] [CrossRef]
- Cao, Z.; Lu, Q.; Gu, Y.; Wu, X.; You, D.; Zhu, X. Characteristics of ordovician reservoirs in shunbei 1 and 5 fault zones, tarim basin. Oil Gas Geol. 2020, 41, 975–984. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Huang, H.; Chen, H.; Zhao, Y. Secondary alteration of ancient Shuntuoguole oil reservoirs, Tarim Basin, NW China. Mar. Pet. Geol. 2020, 111, 202–218. [Google Scholar] [CrossRef]
- Ma, A.; He, Z.; Yun, L.; Wu, X.; Qiu, N.; Chang, J.; Lin, H.; Cao, Z.; Zhu, X.; You, D. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China. J. Nat. Gas Geosci. 2021, 6, 289–300. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Cao, Z. Hydrocarbon accumulation mode of shuntuo 1 well block in the shuntuoguole lower uplift, tarim basin. Pet. Geol. Expr. 2017, 39, 0041–0050. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Guo, H.; Zhu, Z.; Wang, Q.; Yu, P. Hydrocarbon charging history of the ultra-deep reservoir in shun 1 strike-slip fault zone, tarim basin. Oil Gas Geol. 2019, 40, 972–989. (In Chinese) [Google Scholar] [CrossRef]
- Qi, L.; Yun, L.; Cao, Z.; Li, H.; Hung, C. Geological reserves assessment and petroleum exploration targets in shunbei oil & gas field. Xinjiang Pet. Geol. 2021, 42, 127–135. (In Chinese) [Google Scholar]
- Jia, C. Plate Tectonics and Continental Dynamics, Tarim Basin; Petroleum Industry Press: Beijing, China, 2004; p. 130. [Google Scholar]
- Yang, S.; Wu, G.; Zhu, Y.; Zhang, Y.; Zhao, X.; Lu, Z.; Zhang, B. Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 285–299. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Shen, W.; Li, M. Mechanism of Organic Matter Accumulation in Black Shales of the Yuertusi Formation in the Tarim Basin: Insights From Paleoenvironmental Variation During the Early Cambrian. Front. Earth Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, F.; Wang, M.; Zhang, Z.; Ren, R.; Wu, L. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China. AAPG Bull. 2018, 102, 2123–2151. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, G.; Zhang, Y.; Han, J.; Li, T.; Wang, E.; Greenwood, P. The origin and accumulation of multi-phase reservoirs in the east Tabei uplift, Tarim Basin, China. Mar. Pet. Geol. 2018, 98, 533–553. [Google Scholar] [CrossRef]
- Qi, L. Characteristics and inspiration of ultra-deep fault-karst reservoir in the shunbei area of the tarim basin. China Pet. Explor. 2020, 25, 102–111. (In Chinese) [Google Scholar] [CrossRef]
- Moldowan, J.M.; Seifert, W.K.; Arnold, E.; Clardy, J. Structure proof and significance of stereoisomeric 28,30-bisnorhopanes in petroleum and petroleum source rocks. Geochim. Cosmochim. Acta 1984, 48, 1651–1661. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chen, J.; Fu, J.; Sheng, G.; Liu, D.; Zhang, J. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils. Org. Geochem. 1996, 25, 179–190. [Google Scholar] [CrossRef]
- Alexander, R.; Kagi, R.; Rowland, S.; Sheppard, P.; Chirila, T. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums. Geochim. Cosmochim. Acta 1985, 49, 385–395. [Google Scholar] [CrossRef]
- Huo, Q.; Li, Z.; Fu, L.; Gao, M. Study on the correlation of methyldibenzothiophenes distribution and organic maturity. Daqing Pet. Geol. Dev. 2008, 27, 32–38. (In Chinese) [Google Scholar]
- Mango, F.D. The light hydrocarbons in petroleum: A critical review. Org. Geochem. 1997, 26, 417–440. [Google Scholar] [CrossRef]
- Mango, F.D. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis. Geochim. Cosmochim. Acta 1990, 54, 1315–1323. [Google Scholar] [CrossRef]
- Haven, H.T. Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies. Org. Geochem. 1996, 24, 957–976. [Google Scholar] [CrossRef]
- Dahl, J.E.; Moldowan, J.M.; Peters, K.E.; Claypool, G.E.; Rooney, M.A.; Michael, G.E.; Mello, M.R.; Kohnen, M.L. Diamondoids as a quantitative indicator of natural oil cracking. Nature 1999, 399, 54–61. [Google Scholar] [CrossRef]
- Dahl, J.E.P.; Moldowan, J.M.; Wei, Z.; Lipton, P.A.; Denisevich, P.; Gat, R.; Liu, S.; Schreiner, P.R.; Carlson, R.M.K. Synthesis of Higher Diamondoids and Implications for Their Formation in Petroleum. Angew. Chem. Int. Ed. 2010, 49, 9881–9885. [Google Scholar] [CrossRef]
- Chen, J.; Fu, J.; Sheng, G.; Liu, D.; Zhang, J. The structure characterization and geochemical signification of diamondoid hydrocarbons. Chin. Sci. Bull. 1996, 41, 524–527. [Google Scholar]
- Ma, A. New advancement in application of diamondoids on organic geochemistry. Nat. Gas Geosci. 2016, 27, 851–860. (In Chinese) [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M.; Schoell, M.; Hempkins, W.B. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment. Org. Geochem. 1986, 10, 17–27. [Google Scholar] [CrossRef]
- Chai, Z.; Chen, Z.; Patience, R.; Wen, Z.; Tang, Y.; Cheng, B.; Li, M.; Luemba, M.; Wu, Z. Light hydrocarbons and diamondoids in deep oil from Tabei of Tarim Basin: Implications on petroleum alteration and mixing. Mar. Pet. Geol. 2022, 138, 105565. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Light hydrocarbons in subsurface sediments. Geochim. Cosmochim. Acta 1979, 43, 657–672. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Fractionated aromatic petroleums and the generation of gas-condensates. Org. Geochem. 1987, 11, 573–590. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Classification and thermal history of petroleum based on light hydrocarbons. Geochim. Cosmochim. Acta 1983, 47, 303–316. [Google Scholar] [CrossRef]
- Walters, C.C.; Isaksen, G.H.; Peters, K.E. Applications of Light Hydrocarbon Molecular and Isotopic Compositions in Oil and Gas Exploration. In Analytical Advances for Hydrocarbon Research; Springer: Boston, MA, USA, 2003; Volume 120, pp. 247–266. [Google Scholar] [CrossRef]
- Wilhelms, A.; Larter, S. Impact of petroleum charge mixing on reservoir geochemistry. Geol. Soc. Lond. Spéc. Publ. 2004, 237, 27–35. [Google Scholar] [CrossRef]
- Chakhmakhchev, A.; Suzuki, M.; Takayama, K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. Org. Geochem. 1997, 26, 483–489. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Liu, X.; Han, Q.; Wu, J.; Zhong, N. Thermodynamic stability of methyldibenzothiophenes in sedimentary rock extracts: Based on molecular simulation and geochemical data. Org. Geochem. 2018, 129, 24–41. [Google Scholar] [CrossRef]
- Dai, J.X. Identification an d distinction of various alkane gases. Sci. China Ser. B-Chem. 1992, 35, 1246–1257. [Google Scholar]
- Zhu, G.; Zhang, S.; Su, J.; Zhang, B.; Yang, H.; Zhu, Y.; Gu, L. Alteration and multi-stage accumulation of oil and gas in the Ordovician of the Tabei Uplift, Tarim Basin, NW China: Implications for genetic origin of the diverse hydrocarbons. Mar. Pet. Geol. 2013, 46, 234–250. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, Y.; Zhou, X.; Zhang, Z.; Du, D.; Shi, S.; Li, T.; Chen, W.; Han, J. Tsr, deep oil cracking and exploration potential in the Hetianhe gas field, Tarim Basin, China. Fuel 2019, 236, 1078–1092. [Google Scholar] [CrossRef]
- Zhu, G.; Milkov, A.V.; Zhang, Z.; Sun, C.; Zhou, X.; Chen, F.; Han, J.; Zhu, Y. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bull. 2019, 103, 1703–1743. [Google Scholar] [CrossRef]
- Zhan, Z.-W.; Zou, Y.-R.; Pan, C.; Sun, J.-N.; Lin, X.-H.; Peng, P.A. Origin, charging, and mixing of crude oils in the Tahe oilfield, Tarim Basin, China. Org. Geochem. 2017, 108, 18–29. [Google Scholar] [CrossRef]
- Requejo, A.G.; Halpern, H.I. An unusual hopane biodegradation sequence in tar sands from the pt. Arena (monterey) formation. Nature 1989, 342, 670–673. [Google Scholar] [CrossRef]
- Zhu, G.; Milkov, A.V.; Chen, F.; Weng, N.; Zhang, Z.; Yang, H.; Liu, K.; Zhu, Y. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim basin, China. Mar. Pet. Geol. 2018, 89, 252–262. [Google Scholar] [CrossRef]
- Claypool, G.E.; Mancini, E.A. Geochemical relationships of petroleum in mesozoic reservoirs to carbonate source rocks of jurassic smackover formation, southwestern alabama. AAPG 1989, 73, 904–924. [Google Scholar]
- Behar, F.; Ungerer, P.; Kressmann, S.; Rudkiewicz, J.L. Thermal Evolution of Crude Oils in Sedimentary Basins: Experimental Simulation in a Confined System and Kinetic Modeling. Rev. Linstitut Fr. Du Pet. 1991, 46, 151–181. [Google Scholar] [CrossRef]
- Sassen, R.; Joye, S.; Sweet, S.T.; DeFreitas, D.A.; Milkov, A.V.; MacDonald, I.R. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Org. Geochem. 1999, 30, 485–497. [Google Scholar] [CrossRef]
- Leila, M.; Lévy, D.; Battani, A.; Piccardi, L.; Šegvić, B.; Badurina, L.; Pasquet, G.; Combaudon, V.; Moretti, I. Origin of continuous hydrogen flux in gas manifestations at the Larderello geothermal field, Central Italy. Chem. Geol. 2021, 585, 120564. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, S.; Zhang, Y.; Yang, M.; Yan, L.; Zhao, Y.; Zhang, J.; Wang, X.; Zhou, X.; Wang, H. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng Area, Tarim Basin, China. Pet. Explor. Dev. 2019, 46, 1165–1181. [Google Scholar] [CrossRef]
- Liu, W.; Tenger; Gao, B.; Zhang, Z.; Zhang, J.; Zhang, D.; Fan, M.; Fu, X.; Zheng, L.; Liu, Q. H2S formation and enrichment mechanisms in medium to large scale natural gas fields (reservoirs) in the Sichuan Basin. Pet. Explor. Dev. 2010, 37, 513–522. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration. Org. Geochem. 2008, 39, 1137–1143. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Su, J.; Liu, M.; Wang, X.; Hu, J. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 5. Effect of maturation, TSR and mixing on the occurrence and distribution of alkyldibenzothiophenes. Org. Geochem. 2015, 86, 5–18. [Google Scholar] [CrossRef]
- Song, D.F.; Zhang, C.M.; Li, S.M.; Wang, T.G.; Li, M.J. Elevated Mango’sK1Values Resulting from Thermochemical Sulfate Reduction within the Tazhong Oils, Tarim Basin. Energy Fuels 2017, 31, 1250–1258. [Google Scholar] [CrossRef]
- Kissin, Y.V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta 1987, 51, 2445–2457. [Google Scholar] [CrossRef]
- Meulbroek, P.; Cathles, L.; Whelan, J. Phase fractionation at South Eugene Island Block 330. Org. Geochem. 1998, 29, 223–239. [Google Scholar] [CrossRef]
- Xie, Z.; Li, Z.; Wei, G.; Li, J.; Wang, D.; Wang, Z.; Dong, C. Experimental research on the potential of sapropelic kerogen degradation gas and discrimination of oil cracking gas. J. Nat. Gas Geosci. 2016, 1, 471–479. [Google Scholar] [CrossRef]
- Connan, J.; Cassou, A. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 1980, 44, 1–23. [Google Scholar] [CrossRef]
- Hanson, A.D.; Zhang, S.C.; Moldowan, J.M.; Liang, D.G.; Zhang, B.M. Molecular organic geochemistry of the tarim basin, northwest china. AAPG Bull. 2000, 84, 1109–1128. [Google Scholar]
- Deng, Q. Sedimentary Geochemical Records and Organic Matter Accumulation Mechanisms in the Sinian-Lower Cambrian Strata: Case Studies in South China and the Tarim Basin, nw China China Academy of Sciences University; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences: Guangzhou, China, 2021; p. 176. [Google Scholar]
- Yi, L.; Liu, Z.; Chen, Z.; Li, M. Thermal maturity, source characteristics, and migration directions for the Ordovician oil in the Central Tabei Uplift, Tarim Basin: Insight from biomarker geochemistry. J. Pet. Sci. Eng. 2020, 189, 1–14. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Wu, J.; Wang, Y.; Zhang, B.; Zhang, K.; He, L. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China. Pet. Explor. Dev. 2017, 44, 1053–1060. [Google Scholar] [CrossRef]
- Stahl, W.J. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem. Geol. 1977, 20, 121–149. [Google Scholar] [CrossRef]
- Clayton, C.J. Effect of maturity on carbon isotope ratios of oils and condensates. Org. Geochem. 1991, 17, 887–899. [Google Scholar] [CrossRef]
- Guang, H.; Qingqiang, M.; Jie, W.; Tengger; Xiaomin, X.; Longfei, L.; Houyong, L.; Wenhui, L. The original organism assemblages and kerogen carbon isotopic compositions of the early paleozoic source rocks in the tarim basin, china. Acta Geol. Sin. 2018, 92, 2297–2309. [Google Scholar]
- Yang, H.; Yu, S.; Zhang, H.; Li, T.; Fan, S.; Cheng, B.; Chen, C.; Jia, W.; Liao, Z.; Tian, H.; et al. Geochemical characteristics of lower cambrian sources rocks from the deepest drilling of well lt-1 and their significance to deep oil gas exploration of the lower paleozoic system in the tarim basin. Geochimica 2020, 49, 666–682. (In Chinese) [Google Scholar] [CrossRef]
- Gu, Y.; Huang, J.; Jia, C.; Shao, Z.; Sun, Y.; Lu, Q. Research progress on marine oil and gas accumulation in tarim basin. Pet. Geol. Exp. 2020, 42, 0001–0012. [Google Scholar] [CrossRef]
- Hou, D.; Feng, Z. Petroleum Geochemistry; Petroleum Industry Press: Beijing, China, 2011; p. 348. (In Chinese) [Google Scholar]
Well | Depth (m) | Formation | Density (g/cm3) | Viscosity (mm2/s) | Sulfur (%) | Wax (%) | GOR (m3/m3) | Sat (%) | Aro (%) | Sat/Aro | δ13C/‰ |
---|---|---|---|---|---|---|---|---|---|---|---|
S1-3 | 7256–7358 | O2yj | 0.802 | 3.04 | 0.105 | 4.99 | 367 | 72.8 | 14.3 | 5.1 | −31.53 |
S1-18 | 7302–7821 | O2yj+O1–2y | 0.808 | 2.93 | 0.102 | 9.72 | 457 | 83.6 | 9.1 | 9.1 | −32.05 |
S1-7H | 7339–7456 | O2yj | 0.800 | 3.28 | 0.121 | 6.03 | 354 | 83.2 | 9.0 | 9.2 | −31.39 |
S1-20H | 7387–7578 | O2yj+O1–2y | 0.800 | 2.58 | 0.132 | 3.75 | 173 | 89.4 | 6.1 | 14.7 | −32.20 |
S1-1H | 7458–7558 | O2yj | 0.794 | 2.58 | 0.107 | 4.28 | 349 | 75.0 | 6.1 | 12.3 | −31.74 |
S1-5H | 7475–7576 | O2yj | 0.802 | 2.59 | 0.100 | 7.43 | 353 | 67.8 | 5.6 | 12.2 | −32.12 |
S1-11 | 7572–7732 | O2yj | 0.793 | 2.56 | 0.106 | 4.58 | 266 | 83.0 | 8.7 | 9.5 | −32.06 |
S1-14 | 7589–7710 | O2yj | 0.798 | 2.71 | 0.114 | 4.06 | 240 | 85.5 | 8.8 | 9.7 | −32.66 |
S1-15 | 7614–8007 | O2yj+O1–2y | 0.794 | 2.52 | 0.115 | 3.94 | 256 | 87.1 | 7.6 | 11.4 | −32.16 |
S1-16 | 7619–7822 | O2yj+O1–2y | 0.803 | 2.80 | 0.157 | 3.70 | 262 | 86.8 | 8.5 | 10.2 | −31.34 |
S1-9 | 7373–7630 | O2yj+O1–2y | 0.798 | 2.57 | 0.108 | 4.59 | 324 | 73.4 | 8.7 | 8.4 | −31.42 |
SP3H | 7396–7640 | O2yj+O1–2y | 0.795 | 2.55 | 0.102 | 4.48 | 302 | 87.4 | 6.6 | 13.2 | −31.96 |
SL1 | 7262–7710 | O2yj | 0.809 | 3.97 | 0.150 | 3.62 | - | 68.3 | 13.4 | 5.1 | −32.39 |
Well | Chemical Composition (%) | Dryness Index (C1/C1–5) (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | iC4 | C4 | iC5 | C5 | C6+ | ||
S1-3 | 83.65 | 5.99 | 2.66 | 0.58 | 1.01 | 0.38 | 0.45 | 0.33 | 88.31 |
S1-18 | 72.94 | 4.56 | 2.68 | 0.89 | 1.85 | 0.86 | 1.03 | 0.41 | 86.00 |
S1-7 | 83.88 | 6.76 | 2.72 | 0.48 | 0.73 | 0.18 | 0.17 | 0.09 | 88.38 |
S1-20 | 80.80 | 6.68 | 2.88 | 0.54 | 0.87 | 0.27 | 0.28 | 0.29 | 87.52 |
S1-1 | 81.25 | 7.34 | 3.42 | 0.66 | 1.08 | 0.30 | 0.31 | 0.21 | 86.11 |
S1-5 | 78.67 | 8.69 | 3.91 | 0.69 | 1.11 | 0.26 | 0.26 | 0.13 | 84.06 |
S1-11 | 75.99 | 9.36 | 4.34 | 0.75 | 1.26 | 0.32 | 0.33 | 0.16 | 82.29 |
S1-14 | 75.46 | 9.62 | 4.27 | 0.66 | 1.09 | 0.24 | 0.23 | 0.10 | 82.41 |
S1-15 | 71.68 | 10.38 | 5.14 | 0.89 | 1.51 | 0.36 | 0.39 | 0.19 | 79.33 |
S1-16 | 69.73 | 12.21 | 5.95 | 0.99 | 1.70 | 0.39 | 0.39 | 0.15 | 76.33 |
S1-9 | 82.40 | 7.00 | 3.09 | 0.60 | 0.91 | 0.23 | 0.23 | 0.13 | 87.22 |
SP3 | 79.55 | 8.11 | 3.76 | 0.68 | 1.06 | 0.25 | 0.25 | 0.12 | 84.95 |
SL1 | 49.22 | 11.57 | 5.54 | 0.93 | 1.63 | 0.37 | 0.47 | 0.27 | 70.60 |
Well | OEP | CPI | Ph/nC18 | Pr/nC17 | Pr/Ph | DBT/P | C20TT/ C23TT | MAI | MDI | DNR | MDR | DMDBr | Rc1/% | Rc2/% | Rc3/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1-3 | 0.99 | 1.07 | 0.37 | 0.32 | 1.00 | 1.25 | 1.18 | 0.73 | 0.46 | 10.92 | 26.88 | 10.36 | 1.56 | 1.47 | 1.53 |
S1-18 | 1.00 | 1.00 | 0.37 | 0.33 | 1.09 | 0.34 | 1.38 | 0.74 | 0.46 | 6.33 | 8.51 | 3.34 | 1.55 | 1.06 | 0.87 |
S1-7 | 0.99 | 1.01 | 0.37 | 0.32 | 1.07 | 1.22 | 1.43 | 0.73 | 0.47 | 11.13 | 27.15 | 10.25 | 1.59 | 1.49 | 1.54 |
S1-20 | 1.00 | 1.04 | 0.37 | 0.32 | 0.99 | 1.21 | 1.24 | 0.73 | 0.46 | 11.12 | 26.32 | 10.56 | 1.55 | 1.49 | 1.51 |
S1-1 | 1.00 | 1.04 | 0.36 | 0.32 | 1.00 | 1.09 | 1.22 | 0.72 | 0.48 | 11.34 | 28.11 | 10.65 | 1.61 | 1.51 | 1.57 |
S1-5 | 1.00 | 1.04 | 0.38 | 0.32 | 1.00 | 0.92 | 1.14 | 0.71 | 0.45 | 11.03 | 27.76 | 11.83 | 1.54 | 1.48 | 1.56 |
S1-11 | 1.00 | 1.11 | 0.39 | 0.33 | 1.10 | 0.85 | 1.71 | 0.71 | 0.48 | 13.01 | 31.07 | 13.37 | 1.61 | 1.66 | 1.68 |
S1-14 | 1.00 | 1.09 | 0.42 | 0.36 | 1.00 | 1.05 | 1.43 | 0.69 | 0.49 | 12.86 | 35.56 | 13.64 | 1.63 | 1.65 | 1.84 |
S1-15 | 1.00 | 1.16 | 0.39 | 0.33 | 0.98 | 0.76 | 1.00 | 0.69 | 0.49 | 13.09 | 33.59 | 14.59 | 1.63 | 1.67 | 1.77 |
S1-16 | 0.99 | 1.03 | 0.39 | 0.33 | 0.98 | 0.74 | 1.40 | 0.68 | 0.45 | 13.08 | 34.63 | 14.95 | 1.54 | 1.67 | 1.81 |
S1-9 | 0.99 | 1.03 | 0.36 | 0.32 | 1.01 | 1.25 | 1.20 | 0.73 | 0.45 | 10.48 | 23.63 | 9.00 | 1.52 | 1.43 | 1.41 |
SP3 | 0.99 | 1.00 | 0.35 | 0.31 | 1.02 | 1.02 | 1.02 | 0.72 | 0.47 | 9.65 | 21.81 | 8.38 | 1.58 | 1.36 | 1.35 |
SL1 | 0.99 | 1.02 | 0.40 | 0.34 | 0.98 | 0.52 | 0.5 | 0.70 | 0.48 | 8.49 | 19.78 | 6.83 | 1.61 | 1.25 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Hou, D.; Cheng, X.; Jia, Z. Origin of the Ultra-Deep Hydrocarbons from the Shunbei No. 1 Fracture Zone in the North of Shuntuoguole Low Uplift, Tarim Basin, North-Western China. Appl. Sci. 2023, 13, 5297. https://doi.org/10.3390/app13095297
Bian J, Hou D, Cheng X, Jia Z. Origin of the Ultra-Deep Hydrocarbons from the Shunbei No. 1 Fracture Zone in the North of Shuntuoguole Low Uplift, Tarim Basin, North-Western China. Applied Sciences. 2023; 13(9):5297. https://doi.org/10.3390/app13095297
Chicago/Turabian StyleBian, Jiejing, Dujie Hou, Xiong Cheng, and Zhenjie Jia. 2023. "Origin of the Ultra-Deep Hydrocarbons from the Shunbei No. 1 Fracture Zone in the North of Shuntuoguole Low Uplift, Tarim Basin, North-Western China" Applied Sciences 13, no. 9: 5297. https://doi.org/10.3390/app13095297
APA StyleBian, J., Hou, D., Cheng, X., & Jia, Z. (2023). Origin of the Ultra-Deep Hydrocarbons from the Shunbei No. 1 Fracture Zone in the North of Shuntuoguole Low Uplift, Tarim Basin, North-Western China. Applied Sciences, 13(9), 5297. https://doi.org/10.3390/app13095297