A Review of Blast Loading in the Urban Environment
Abstract
:1. Introduction
2. Current Knowledge
2.1. Basic Theory
- Z is the scaled distance (m/kg).
- R is the stand-off distance (m).
- W is the explosive mass (kg, typically as an equivalent mass of TNT).
- is the TNT equivalence factor.
- is the mass of TNT that would create an “equivalent energy” blast compared to a mass of an explosive compound (kg).
- is the mass of the explosive compound under investigation (kg).
2.2. Blasts around Obstacles
2.3. Channelling and Shielding
2.4. Effects of Street Confinement
2.5. Degree of Confinement
- is the wall ratio.
- is the corner ratio.
- H is a Heaviside function (returns 1 if positive or 0 if negative).
- is the limiting scaled distance (m/kg).
- is the scaled distance to the -reflecting surface (m/kg).
- is the area of the -reflecting surface (m).
- is the corner factor and has pre-defined values depending on the corner type.
- -
- Ground diffraction corner, c = 2;
- -
- Top of building diffraction corner, c = 1;
- -
- Ground re-entrant corner, c = 4;
- -
- Top of building re-entrant corner, c = 4.
- A is the cut cell area.
- D is the inverse distance of each cut cell from the charge.
- is the total wall area loaded by the blast (within ).
- is the TNT equivalent charge mass.
- is the average maximum specific impulse across all cells at a structural boundary (Equation (8)).
- A is the cut cell area.
- D is the inverse distance of each cut cell from the charge.
2.6. Façade Failure
2.7. Surface Roughness
2.8. Large Magnitude Urban Blast
2.9. Alternative Protective Methods
3. Numerical Methods
3.1. General Computational Fluid Dynamics Studies
3.2. Eagle-Blast
3.3. BlastFoam
3.4. BeamBlast
3.5. Mm-Ale Solver
3.6. Neural Networks
4. Experimental Methods and Instrumentation
4.1. Imaging Techniques
4.1.1. Three-Dimensional Imaging
4.1.2. Schlieren Imaging
4.1.3. Retroreflective Shadowgraphy
4.2. Pressure Measurements
4.2.1. Overview
4.2.2. Optical Pressure Sensors
4.2.3. Piezoresistive/Piezoelectric Pressure Sensors
4.2.4. Fiber Bragg Grating Pressure Sensors
4.2.5. Extrinsic Fabry–Perot Interferometric Pressure Sensors
4.2.6. Hybrid Pressure Sensor Usage
- Hopkinson pressure bars (HPBs);
- Stress gauges;
- Piezo electric/resistive pressure gauges;
- Impulse momentum traps;
- Load cells.
4.3. Small-Scale Blast Waves
4.3.1. Gas Bubbles
4.3.2. Exploding Wire
4.3.3. Pressurised Glass Spheres
4.3.4. Pellets
4.3.5. Laser-Induced Plasma
4.3.6. Detonation Transmission Tubing
5. Summary and Conclusions
5.1. Current Knowledge
5.2. Numerical Methods
5.3. Experimental Possibilities
5.4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Plastic Pollution. 2018. Available online: https://ourworldindata.org/plastic-pollution (accessed on 11 November 2022).
- Dusenberry, D. Handbook for Blast-Resistant Design of Buildings; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Norville, H.S.; Harvill, N.; Conrath, E.J.; Shariat, S.; Mallonee, S. Glass-related injuries in Oklahoma City bombing. J. Perform. Constr. Facil. 1999, 13, 50–56. [Google Scholar] [CrossRef]
- Rigby, S.E.; Lodge, T.; Alotaibi, S.; Barr, A.; Clarke, S.; Langdon, G.; Tyas, A. Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media. Shock Waves 2020, 30, 671–675. [Google Scholar] [CrossRef]
- Rufolo, P.; Muraro, D.; Lorini, V. Social Media Image Analysis in the Immediate Aftermath of the 2020 Beirut Blast; Technical Report JRC124081; Joint Research Centre, Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Halswijk, W. BeamBlast: Blast path-finding algorithms. In Proceedings of the 16th ISIEMS International Symposium for the Interaction of the Effects of Munitions with Structures, Destin, FL, USA, 9–13 November 2015. [Google Scholar]
- Adhikary, S.; Dutta, S. Blast resistance and mitigation strategies of structures: Present status and future trends. Proc. Inst. Civ. Eng. Struct. Build. 2019, 172, 249–266. [Google Scholar] [CrossRef]
- Cormie, D.; Mays, G.; Smith, P. Blast Effects on Buildings, 2nd ed.; Thomas Telford: London, UK, 2009. [Google Scholar]
- Duncan-Miller, G. Urban Blast Waves: A Semi-Analytic Solution for Intense Explosions with Rigid Wall Reflections. Ph.D. Thesis, Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2016. [Google Scholar]
- Larcher, M.; Casadeia, F. Explosions in complex geometries–A comparison of several approaches. Int. J. Prot. Struct. 2010, 1, 169–196. [Google Scholar] [CrossRef]
- Stirling, C.; Misselbrook, N.; Nikodym, L.; Mould, J.; Wesevic, J. The importance of considering realistic blast waveforms and corresponding methods of assessing structural damage when conducting quantitative risk assessments. In Proceedings of the IChemE Hazards 27, Birmingham, UK, 10–12 May 2017. [Google Scholar]
- Rigby, S.E.; Tyas, A.; Bennett, T.; Clarke, S.D.; Fay, S.D. The negative phase of the blast load. Int. J. Prot. Struct. 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Rigby, S.; Tyas, A.; Fay, S.; Clarke, S.; Warren, J. Validation of semi-empirical blast pressure predictions for far-field explosions-is there inherent variability in blast wave parameters? In Proceedings of the 6th International Conference on Protection of Structures against Hazards, Tianjin, China, 16–17 October 2014. [Google Scholar]
- Rigby, S.; Knighton, R.; Clarke, S.; Tyas, A. Reflected near-field blast pressure measurements using high speed video. Exp. Mech. 2020, 60, 875–888. [Google Scholar] [CrossRef]
- Hopkinson, B. British Ordnance Board Minutes 13565; Public Records Office: London, UK, 1915; Volume 187. [Google Scholar]
- Cranz, C. Lehrbuch der Basllistik; Springer: Berlin/Heidelberg, Germany, 1926. [Google Scholar]
- Rigby, S.E.; Tyas, A.; Curry, R.J.; Langdon, G.S. Experimental Measurement of Specific Impulse Distribution and Transient Deformation of Plates Subjected to Near-Field Explosive Blasts. Exp. Mech. 2019, 59, 163–178. [Google Scholar] [CrossRef]
- Rigby, S.E.; Akintaro, O.I.; Fuller, B.J.; Tyas, A.; Curry, R.J.; Langdon, G.S.; Pope, D.J. Predicting the response of plates subjected to near-field explosions using an energy equivalent impulse. Int. J. Impact Eng. 2019, 128, 24–36. [Google Scholar] [CrossRef]
- Rigby, S.; Osborne, C.; Langdon, G.; Cooke, S.; Pope, D. Spherical equivalence of cylindrical explosives: Effect of charge shape on deflection of blast-loaded plates. Int. J. Impact Eng. 2021, 155, 103892. [Google Scholar] [CrossRef]
- Langran-Wheeler, C.; Rigby, S.E.; Clarke, S.D.; Tyas, A.; Stephens, C.; Walker, R. Near-field spatial and temporal blast pressure distributions from non-spherical charges: Horizontally-aligned cylinders. Int. J. Prot. Struct. 2021, 12, 492–516. [Google Scholar] [CrossRef]
- Tyas, A.; Reay, J.J.; Fay, S.D.; Clarke, S.D.; Rigby, S.E.; Warren, J.A.; Pope, D.J. Experimental studies of the effect of rapid afterburn on shock development of near-field explosions. Int. J. Prot. Struct. 2016, 7, 456–465. [Google Scholar] [CrossRef]
- Rigby, S.; Sielicki, P. An investigation of TNT equivalence of hemispherical PE4 charges. Eng. Trans. 2014, 62, 423–435. [Google Scholar]
- Bogosian, D.; Yokota, M.; Rigby, S. TNT equivalence of C-4 and PE4: A review of traditional sources and recent data. In Proceedings of the 24th International Symposium on Military Aspects of Blast and Shock (MABS24), Halifax, NS, Canada, 19–23 September 2016. [Google Scholar]
- Grisaro, H.; Edri, I.; Rigby, S. TNT equivalency analysis of specific impulse distribution from close-in detonations. Int. J. Prot. Struct. 2021, 12, 315–330. [Google Scholar] [CrossRef]
- Farrimond, D.G.; Woolford, S.; Tyas, A.; Rigby, S.E.; Clarke, S.D.; Barr, A.; Whittaker, M.; Pope, D.J. Far-field positive phase blast parameter characterisation of RDX and PETN based explosives. Int. J. Prot. Struct. 2023; ahead of print. [Google Scholar]
- Smith, P.; Mays, G.; Rose, T.; Teo, K.; Roberts, B. Small scale models of complex geometry for blast overpressure assessment. Int. J. Impact Eng. 1992, 12, 345–360. [Google Scholar] [CrossRef]
- Johnson, E.M.; Grahl, N.; Langenderfer, M.J.; Doucet, D.P.; Schott, J.; Williams, K.; Rutter, B.; Johnson, C. An experimental and simulated investigation into the validity of unrestricted blast wave scaling models when applied to transonic flow in complex tunnel environments. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Xiao, W.; Andrae, M.; Gebbeken, N. Air blast TNT equivalence concept for blast-resistant design. Int. J. Mech. Sci. 2020, 185, 105871. [Google Scholar] [CrossRef]
- Hyde, D.W. Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, ‘Fundamentals of Protective Design for Conventional Weapons’ (User’s Guide); Technical Report; Army Engineer Waterways Experiment Station Vicksburg MS Structures Lab.: Vicksburg, MS, USA, 1988. [Google Scholar]
- Britt, J.R.; Lumsden, M.G. Internal Blast and Thermal Environment from Internal and External Explosions: A User’s Guide for the BLAST-X Code, Version 3.0; Technical Report SAIC 405-94-2; Science Applications International Corporation: St. Joseph, LA, USA, 1994. [Google Scholar]
- Angelides, S.; Burgan, B.; Kyprianou, C.; Rigby, S.; Tyas, A. EMBlast: A software for rapidly and accurately calculating blast loads on structures. In Proceedings of the 97th Comité International Des Construction Industrielles (CICIND) Conference, Paphos, Cyprus, 19–21 October 2022. [Google Scholar]
- Smith, P.D.; Rose, T.A. Blast wave propagation in city streets—An overview. Prog. Struct. Eng. Mater. 2006, 8, 16–28. [Google Scholar] [CrossRef]
- Gautier, A.; Sochet, I.; Courtiaud, S. Analysis of shock wave interaction with an obstacle by coupling pressure measurements and visualization. Sensors 2022, 22, 3325. [Google Scholar] [CrossRef]
- Gautier, A.; Sochet, I.; Lapebie, E.; Boubrit, A. Shock Wave Propagation in an Obstructed Area. Wit Trans. Built Environ. 2020, 198, 15–27. [Google Scholar]
- Gautier, A.; Sochet, I.; Lapebie, E. Analysis of 3D interaction of a blast wave with a finite wall. Shock Waves 2022, 32, 273–282. [Google Scholar] [CrossRef]
- Hajek, R.; Foglar, M.; Fladr, J. Influence of barrier material and barrier shape on blast wave mitigation. Constr. Build. Mater. 2016, 120, 54–64. [Google Scholar] [CrossRef]
- Smith, P.; Rose, T.; Ng, S. The influence of areal density on the shielding and channelling of blast by buildings. In Proceedings of the 18th International Symposium on Military Aspect of Blast and Shock (MABS18), Bad Reichenhall, Germany, 27 September–1 October 2004. [Google Scholar]
- Rose, T.A. Air3d User’s Guide; Cranfield University, Royal Military College of Science: Shrivenham, UK, 2002. [Google Scholar]
- Boeing, G. Urban spatial order: Street network orientation, configuration, and entropy. Appl. Netw. Sci. 2019, 4, 67. [Google Scholar] [CrossRef]
- Smith, P.; Rose, T.; Green, J. The effect of arrays of suburban buildings in providing shielding from blast. In Proceedings of the 11th International Symposium on Interaction of the Effects of Munitions with Structures, Mannheim, Germany, 5–9 May 2003. [Google Scholar]
- Gan, K.; Brewer, T.; Pope, D.; Rigby, S. Probabilistic analysis of blast–obstacle interaction in a crowded internal environment. Probabilistic Eng. Mech. 2022, 68, 103227. [Google Scholar] [CrossRef]
- Fouchier, C.; Laboureur, D.; Youinou, L.; Lapebie, E.; Buchlin, J. Experimental investigation of blast wave propagation in an urban environment. J. Loss Prev. Process Ind. 2017, 49, 248–265. [Google Scholar] [CrossRef]
- Smith, P.; Whalen, G.; Feng, L.; Rose, T. Blast loading on buildings from explosions in City Streets. Proc. Inst. Civ. Eng. Struct. Build. 2001, 146, 47–55. [Google Scholar] [CrossRef]
- Kinney, G.F.; Graham, K.J. Internal blast. Explosive Shocks in Air; Springer: Berlin/Heidelberg, Germany, 1985; pp. 137–160. [Google Scholar]
- France groupe d’etude des Modes Operatoires (GEMO). Determination Desequivalents tnt par Effetde Souffle des Explosifs; GEMO: Lyon, France, 2013. [Google Scholar]
- Rose, T.; Smith, P. Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses. Int. J. Impact Eng. 2002, 27, 359–376. [Google Scholar] [CrossRef]
- Ripley, R.; Cloney, C.; Donahue, L.; Zhang, F. Extended near-field regime in urban confinement. In Proceedings of the 22nd International Symposium on Military Aspects of Blast and Shock, Bourges, France, 4 November 2012. [Google Scholar]
- Donahue, L.; Zhang, F.; Ripley, R. Numerical models for afterburning of TNT detonation products in air. Shock Waves 2013, 23, 559–573. [Google Scholar] [CrossRef]
- Anthistle, T.; Fletcher, D.; Tyas, A. Characterisation of blast loading in complex, confined geometries using quarter symmetry experimental methods. Shock Waves 2016, 26, 749–757. [Google Scholar] [CrossRef]
- Sochet, I.; Gault, K.; Hakenholz, L. Propagation of shock waves in two rooms communicating through an opening. In Direct Numerical Simulations-An Introduction and Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Donahue, L.; Ripley, R.; Zhang, F. Validation of the correlation between urban blast confinement and structural load. In Proceedings of the 24th International Symposium on Military Aspects of Blast and Shock (MABS24), Halifax, NS, Canada, 19–23 September 2016. [Google Scholar]
- Smith, P.; Rose, T.; Krahe, S.; Franks, M. Façade failure effects on blast propagation along city streets. Proc. Inst. Civ.-Eng.-Struct. Build. 2003, 156, 359–365. [Google Scholar] [CrossRef]
- Dib, N.; Zéhil, G.P.; Rigby, S. On the blast-wave shielding effect of porous buildings. J. Fluids Struct. 2022, 115, 103787. [Google Scholar] [CrossRef]
- Dewey, J.; McMillin, D.; Classen, D. Photogrammetry of spherical shocks reflected from real and ideal surfaces. J. Fluid Mech. 1977, 81, 701–717. [Google Scholar] [CrossRef]
- Nguyen-Dinh, M.; Lardjane, N.; Duchenne, C.; Gainville, O. Direct simulations of outdoor blast wave propagation from source to receiver. Shock Waves 2017, 27, 593–614. [Google Scholar] [CrossRef]
- Pasman, H.; Fouchier, C.; Park, S.; Quddus, N.; Laboureur, D. Beirut ammonium nitrate explosion: Are not we really learning anything? Process Saf. Prog. 2020, 39, e12203. [Google Scholar] [CrossRef]
- ElGharbawi, T.; Zarzoura, F. Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon. ISPRS J. Photogramm. Remote Sens. 2021, 173, 1–9. [Google Scholar] [CrossRef]
- Agapiou, A. Damage Proxy Map of the Beirut Explosion on 4th of August 2020 as Observed from the Copernicus Sensors. Sensors 2020, 20, 6382. [Google Scholar] [CrossRef] [PubMed]
- Kingery, C.; Bulmash, G. Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst; Technical Report ARBRL-TR-02555; U.S Army BRL, Aberdeen Proving Ground: Harford County, MD, USA, 1984. [Google Scholar]
- Stennett, C.; Gaulter, S.; Akhavan, J. An estimate of the TNT-equivalent net explosive quantity (NEQ) of the Beirut Port explosion using publicly-available tools and data. Propellants Explos. Pyrotech. 2020, 45, 1675–1679. [Google Scholar] [CrossRef]
- Aouad, C.; Chemissany, W.; Mazzali, P.; Temsah, Y.; Jahami, A. Beirut explosion: TNT equivalence from the fireball evolution in the first 170 milliseconds. Shock Waves 2021, 31, 813–827. [Google Scholar] [CrossRef]
- Díaz, J. Explosion analysis from images: Trinity and Beirut. Eur. J. Phys. 2021, 42, 035803. [Google Scholar] [CrossRef]
- Díaz, J.; Rigby, S. Blast wave kinematics: Theory, experiments, and applications. Shock Waves 2022, 32, 405–415. [Google Scholar] [CrossRef]
- Locking, P. The trouble with TNT equivalence. In Proceedings of the 26th International Symposium on Ballistics, Miami, FL, USA, 12–16 September 2011. [Google Scholar]
- Sivaraman, S.; Varadharajan, S. Investigative consequence analysis: A case study research of beirut explosion accident. J. Loss Prev. Process Ind. 2021, 69, 104387. [Google Scholar] [CrossRef]
- Pilger, C.; Gaebler, P.; Hupe, P.; Kalia, A.C.; Schneider, F.M.; Steinberg, A.; Sudhaus, H.; Ceranna, L. Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Sci. Rep. 2021, 11, 14144. [Google Scholar] [CrossRef]
- Ismail, S.; Raphael, W.; Durrand, E. Case study of the Beirut port explosion using 3D laser scan and nonlinear finite element model. Res. Eng. Struct. Mater. 2021, 7, 551–577. [Google Scholar] [CrossRef]
- Ismail, S.A.; Raphael, W.; Durand, E.; Kaddah, F.; Geara, F. Analysis of the structural response of Beirut port concrete silos under blast loading. Arch. Civ. Eng. 2021, 67, 619–638. [Google Scholar]
- Temsah, Y.; Jahami, A.; Aouad, C. Silos structural response to blast loading. Eng. Struct. 2021, 243, 112671. [Google Scholar] [CrossRef]
- Yu, G.D.; Wang, Y.; Zheng, L.; Huang, J.; Li, J.L.; Gong, L.Z.; Chen, R.; Li, W.; Huang, J.; Duh, Y.S. Comprehensive study on the catastrophic explosion of ammonium nitrate stored in the warehouse of Beirut port. Process Saf. Environ. Prot. 2021, 152, 201–219. [Google Scholar] [CrossRef]
- Goldstein, P. Reconciling conflicting estimates of the Beirut explosion yield and mushroom cloud height: Effects of an aqueous near source environment. Countering Wmd J. 2021, 22, 121–137. [Google Scholar]
- Clough, L.G.; Clubley, S.K. Steel column response to thermal and long duration blast loads inside an air blast tunnel. Struct. Infrastruct. Eng. 2019, 15, 1510–1528. [Google Scholar] [CrossRef]
- Denny, J.W.; Clubley, S.K. Long-duration blast loading & response of steel column sections at different angles of incidence. Eng. Struct. 2019, 178, 331–342. [Google Scholar]
- Cannon, L.; Clubley, S.K. Structural response of simple partially-clad steel frames to long-duration blast loading. Structures 2021, 32, 1260–1270. [Google Scholar] [CrossRef]
- Clubley, S.K. Non-linear long duration blast loading of cylindrical shell structures. Eng. Struct. 2014, 59, 113–126. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Wang, L.; Wei, J.; Wang, W. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings. Thin-Walled Struct. 2021, 163, 107747. [Google Scholar] [CrossRef]
- Børvik, T.; Hanssen, A.; Langseth, M.; Olovsson, L. Response of structures to planar blast loads – A finite element engineering approach. Comput. Struct. 2009, 87, 507–520. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Wang, S.; Zhong, W.; Zhang, R.; Yao, X. Dynamic response and failure analysis for urban bridges under far-field blast loads. Eng. Struct. 2023, 285, 116043. [Google Scholar] [CrossRef]
- Denny, J.W.; Clubley, S.K. Evaluating long-duration blast loads on steel columns using computational fluid dynamics. Struct. Infrastruct. Eng. 2019, 15, 1419–1435. [Google Scholar] [CrossRef]
- Cannon, L.; Denny, J.; Clubley, S. Eulerian solver sensitivity for computing long-duration blast drag loading on columns. Proc. Inst. Civ.-Eng.-Eng. Comput. Mech. 2022, 175, 1–13. [Google Scholar] [CrossRef]
- Warnstedt, P.; Gebbeken, N. Innovative protection of urban areas–Experimental research on the blast mitigating potential of hedges. Landsc. Urban Plan. 2020, 202, 103876. [Google Scholar] [CrossRef]
- Alshammari, O.G.; Isaac, O.S.; Clarke, S.D.; Rigby, S.E. Mitigation of blast loading through blast–obstacle interaction. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Isaac, O.S.; Alshammari, O.G.; Clarke, S.D.; Rigby, S.E. Experimental investigation of blast mitigation of pre-fractal obstacles. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Isaac, O.S.; Alshammari, O.G.; Pickering, E.G.; Clarke, S.D.; Rigby, S.E. Blast wave interaction with structures–An overview. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Century-Dynamics. AUTODYN Users Manual; Version 4.3; Century-Dynamics: Concord, CA, USA, 2003. [Google Scholar]
- Armstrong, B.J.; Rickman, D.D.; Baylot, J.T.; Bevins, T.L. Code validation studies for blast in urban terrain. In Proceedings of the 2002 HPC User’s Group Conference, Austin, TX, USA, 10–14 June 2002. [Google Scholar]
- Remennikov, A.; Rose, T. Modelling blast loads on buildings in complex city geometries. Comput. Struct. 2005, 83, 2197–2205. [Google Scholar] [CrossRef]
- Johansson, M.; Larsen, O.; Laine, L. Explosion at an intersection in an Urban Environment—Experiments and analyses. In Proceedings of the 78th Shock and Vibration Symposium, Philadelphia, PA, USA, 4–8 November 2007. [Google Scholar]
- Hank, S.; Saurel, R.; Le Métayer, O.; Lapébie, E. Modeling blast waves, gas and particles dispersion in urban and hilly ground areas. J. Hazard. Mater. 2014, 280, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Codina, R.H.; Ambrosini, D.; de Borbón, F. Numerical study of confined explosions in urban environments. Int. J. Prot. Struct. 2013, 4, 591–617. [Google Scholar] [CrossRef]
- Drazin, W. Blast Propagation and Damage in Urban Topographies. Ph.D. Thesis, The Laboratory for Scientific Computing, Cavendish Laboratory, University of Cambridge, Cambridge, UK, 2017. [Google Scholar]
- Mohr, L.; Benauer, R.; Leitl, P.; Fraundorfer, F. Damage estimation of explosions in urban environments by simulation. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences–ISPRS Archives Volume XLII-3/W8. Gi4DM 2019—GeoInformation for Disaster Management, Prague, Czech Republic, 3–6 September 2019; Volume 42, pp. 253–260. [Google Scholar]
- Chi, M.; Jiang, H.; Lan, X.; Xu, T.; Jiang, Y. Study on Overpressure Propagation Law of Vapor Cloud Explosion under Different Building Layouts. ACS Omega 2021, 6, 34003–34020. [Google Scholar] [CrossRef] [PubMed]
- Luccioni, B.; Ambrosini, R.; Danesi, R. Analysing explosive damage in an urban environment. Proc. Inst. Civ. Eng. Struct. Build. 2005, 158, 1–12. [Google Scholar] [CrossRef]
- Ambrosini, D.; Luccioni, B.; Jacinto, A.; Danesi, R. Location and mass of explosive from structural damage. Eng. Struct. 2005, 27, 167–176. [Google Scholar] [CrossRef]
- Christensen, S.O.; Hjort, Ø.J.S. Back Calculation of the Oslo Bombing on July 22nd, Using Window Breakage. In Proceedings of the 22nd International Symposium on Military Aspects of Blast and Shock, Bourges, France, 4 November 2012. [Google Scholar]
- Marks, N.; Stewart, M.; Netherton, M.; Stirling, C. Airblast variability and fatality risks from a VBIED in a complex urban environment. Reliab. Eng. Syst. Saf. 2021, 209, 107459. [Google Scholar] [CrossRef]
- Alterman, D.; Stewart, M.; Netherton, M. Probabilistic assessment of airblast variability and fatality risk estimation for explosive blasts in confined building spaces. Int. J. Prot. Struct. 2019, 10, 306–329. [Google Scholar] [CrossRef]
- Valsamos, G.; Larcher, M.; Casadei, F. Beirut explosion 2020: A case study for a large-scale urban blast simulation. Saf. Sci. 2021, 137, 105190. [Google Scholar] [CrossRef]
- Willenborg, B. Simulation of Explosions in Urban Space and Result Analysis Based on CityGML City Models and a Cloud Based 3D Web Client; Technical University Munich Chair of Geoinformatics: Munich, Germany, 2015. [Google Scholar]
- Sklavounos, S.; Rigas, F. Computer simulation of shock waves transmission in obstructed terrains. J. Loss Prev. Process Ind. 2004, 17, 407–417. [Google Scholar] [CrossRef]
- Cullis, I.G.; Nikiforakis, N.; Frankl, P.; Blakely, P.; Bennett, P.; Greenwood, P. Simulating geometrically complex blast scenarios. Def. Technol. 2016, 12, 134–146. [Google Scholar] [CrossRef]
- Brittle, M. Blast Propagation in a Geometrically Complex Environment. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2004. [Google Scholar]
- Brewer, T.; Vonk, P.; Heylmun, J. Blastfoam: A free and open-source CFD airblast code for simulating high-explosive detonation. Explos. Eng. 2020, 27–31. [Google Scholar]
- Brewer, T.; Vonk, P.; Heylmun, J. Validation of the Blastfoam Airblast Solver; Technical Report; Synthetik Applied Technologies: Austin, TX, USA, 2020; pp. 18–45. [Google Scholar]
- Dörr, A.; Gürke, G.; Brugger, W. Validation Experiments for Blast Solver. In Fraunhofer EMI Report; Fraunhofer EMI: Freiburg im Breisgau, Germany, 2007. [Google Scholar]
- Lee, S.; Vlahopoulos, N.; Mohammad, S. Development of a Regression Model for Blast Pressure Prediction in Urban Street Configurations. In Proceedings of the 16th International LS-DYNA User Conference, Virtual Event, 10–11 June 2020. [Google Scholar]
- Rose, T.A. An Approach to the Evaluation of Blast Loads on Finite and Semi-Infinite Structures. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2010. [Google Scholar]
- Remennikov, A.; Mendis, P. Prediction of airblast loads in complex environments using Artificial Neural Networks. Wit Trans. Built Environ. Struct. Under Shock Impact IX Lisbon Port. 2006, 87, 269–278. [Google Scholar]
- Dennis, A.; Pannell, J.; Smyl, D.; Rigby, S. Prediction of blast loading in an internal environment using Artificial Neural Networks. Int. J. Prot. Struct. 2020, 12, 287–314. [Google Scholar] [CrossRef]
- Ruscade, G.; Sochet, I.; Hakenholz, L.; Djafer, K. Shock Wave Propagation in a Double Room. Wit Trans. Built Environ. 2020, 198, 29–39. [Google Scholar]
- Pannell, J.; Panoutsos, G.; Cooke, S.; Pope, D.; Rigby, S. Predicting specific impulse distributions for spherical explosives in the extreme near-field using a Gaussian function. Int. J. Prot. Struct. 2021, 12, 437–459. [Google Scholar] [CrossRef]
- Becker, M.; Klavzar, A.; Wolf, T.; Renck, M. Data-driven prediction of plate velocities and plate deformation of explosive reactive armor. Def. Technol. 2022, 18, 2141–2149. [Google Scholar] [CrossRef]
- Bortolan Neto, L.; Saleh, M.; Pickerd, V.; Yiannakopoulos, G.; Mathys, Z.; Reid, W. Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings. Int. J. Impact Eng. 2020, 137, 103461. [Google Scholar] [CrossRef]
- Pannell, J.; Rigby, S.; Panoutsos, G. Physics-informed regularisation procedure in neural networks: An application in blast protection engineering. Int. J. Prot. Struct. 2022, 13, 555–578. [Google Scholar] [CrossRef]
- Pannell, J.; Rigby, S.; Panoutsos, G. Application of transfer learning for the prediction of blast impulse. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Flood, I.; Bewick, B.; Rauch, E. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Simulation. Int. J. Prot. Struct. 2012, 3, 431–448. [Google Scholar] [CrossRef]
- Kang, M.A.; Park, C.H. Prediction of Peak Pressure by Blast Wave Propagation Between Buildings Using a Conditional 3D Convolutional Neural Network. IEEE Access 2023, 11, 26114–26124. [Google Scholar] [CrossRef]
- Zahedi, M.; Golchin, S. Prediction of blast loading on protruded structures using machine learning methods. Int. J. Prot. Struct. 2023; ahead of print. [Google Scholar]
- Winter, K.O.; Hargather, M.J. Three-dimensional shock wave reconstruction using multiple high-speed digital cameras and background-oriented schlieren imaging. Exp. Fluids 2019, 60, 1–13. [Google Scholar] [CrossRef]
- Settles, G.S.; Hargather, M.J. A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 2017, 28, 042001. [Google Scholar] [CrossRef]
- Hargather, M.J.; Settles, G.S. Natural-background-oriented schlieren imaging. Exp. Fluids 2010, 48, 59–68. [Google Scholar] [CrossRef]
- Mizukaki, T.; Tsukada, H.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y. Quantitative visualization of open-air explosions by using background-oriented schlieren with natural background. In Proceedings of the 28th International Symposium on Shock Waves, Manchester, UK, 17–22 July 2012; Springer: Berlin/Heidelberg, Germany; pp. 465–470. [Google Scholar]
- Higham, J.E.; Isaac, O.S.; Rigby, S.E. Optical flow tracking velocimetry of near-field explosions. Meas. Sci. Technol. 2022, 33, 047001. [Google Scholar] [CrossRef]
- Dela Cueva, J.C.A.; Zheng, L.; Lawlor, B.; Nguyen, K.T.; Westra, A.; Nunez, J.; Zanteson, J.; McGuire, C.; Chavez Morales, R.; Katko, B.J.; et al. Blast wave interaction with structures: An application of exploding wire experiments. Multiscale Multidiscip. Model. Exp. Des. 2020, 3, 337–347. [Google Scholar] [CrossRef]
- Zheng, L.; Lawlor, B.; Katko, B.; McGuire, C.; Zanteson, J.; Eliasson, V. Image processing and edge detection techniques to quantify shock wave dynamics experiments. Exp. Tech. 2021, 45, 483–495. [Google Scholar] [CrossRef]
- Hargather, M.J.; Settles, G.S. Retroreflective shadowgraph technique for large-scale flow visualization. Appl. Opt. 2009, 48, 4449–4457. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, H.E. Shock wave photography of large subjects in daylight. Rev. Sci. Instruments 1958, 29, 171–172. [Google Scholar] [CrossRef]
- Edgerton, H.E. Electronic Flash, Strobe; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Slangen, P.; Lauret, P.; Aprin, L.; Heymes, F.; Lecysyn, N. Optical characterizations of falling droplets interacting with shock wave. In Proceedings of the 10th Pacific Symposium on Flow Visualization and Image Processing (PSFVIP10), Naples, Italy, 15–18 June 2015. [Google Scholar]
- Watson, S.; MacPherson, W.; Barton, J.; Jones, J.; Tyas, A.; Pichugin, A.; Hindle, A.; Parkes, W.; Dunare, C.; Stevenson, T. Investigation of shock waves in explosive blasts using fibre optic pressure sensors. Meas. Sci. Technol. 2006, 17, 1337. [Google Scholar] [CrossRef]
- Schenato, L. A review of distributed fibre optic sensors for geo-hydrological applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef]
- Cheval, K.; Loiseau, O.; Vala, V. Laboratory scale tests for the assessment of solid explosive blast effects. Part I: Reflected blast series of tests. J. Loss Prev. Process Ind. 2010, 23, 613–621. [Google Scholar] [CrossRef]
- Cheval, K.; Loiseau, O.; Vala, V. Laboratory scale tests for the assessment of solid explosive blast effects. Part II: Reflected blast series of tests. J. Loss Prev. Process Ind. 2012, 25, 436–442. [Google Scholar] [CrossRef]
- Rigby, S.E.; Fay, S.D.; Tyas, A.; Warren, J.A.; Clarke, S.D. Angle of incidence effects on far-field positive and negative phase blast parameters. Int. J. Prot. Struct. 2015, 6, 23–42. [Google Scholar] [CrossRef]
- Quinn, M.K.; Kontis, K. Pressure-Sensitive Paint Measurements of Transient Shock Phenomena. Sensors 2013, 13, 4404–4427. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.K.; Stokes, N.; Roberts, D.; Lang, J. Use of Pressure Sensitive Paint as a Blast Diagnostic. Explos. Eng. 2023, 31–33. [Google Scholar]
- Hegde, G.; Prasad, M.; Asokan, S. Temperature compensated diaphragm based Fiber Bragg Grating (FBG) sensor for high pressure measurement for space applications. Microelectron. Eng. 2021, 248, 111615. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, Y.; Hu, J.; Jiang, L.; Zhang, T. Microelectromechanical system-based, high-finesse, optical fiber Fabry–Perot interferometric pressure sensors. Sensors Actuators Phys. 2020, 302, 111795. [Google Scholar] [CrossRef]
- Clarke, S.; Fay, S.; Warren, J.; Tyas, A.; Rigby, S.; Elgy, I. A large scale experimental approach to the measurement of spatially and temporally localised loading from the detonation of shallow-buried explosives. Meas. Sci. Technol. 2014, 26, 015001. [Google Scholar] [CrossRef]
- Rigby, S.; Fay, S.; Clarke, S.; Tyas, A.; Reay, J.; Warren, J.; Gant, M.; Elgy, I. Measuring spatial pressure distribution from explosives buried in dry Leighton Buzzard sand. Int. J. Impact Eng. 2016, 96, 89–104. [Google Scholar] [CrossRef]
- Rigby, S.; Fay, S.; Tyas, A.; Clarke, S.; Reay, J.; Warren, J.; Gant, M.; Elgy, I. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils. Shock Waves 2018, 28, 613–626. [Google Scholar] [CrossRef]
- Clarke, S.; Rigby, S.; Fay, S.; Barr, A.; Tyas, A.; Gant, M.; Elgy, I. Characterisation of buried blast loading. Proc. R. Soc. Math. Phys. Eng. Sci. 2020, 476, 20190791. [Google Scholar] [CrossRef] [PubMed]
- Rigby, S.E.; Tyas, A.; Clarke, S.D.; Fay, S.D.; Reay, J.J.; Warren, J.A.; Gant, M.; Elgy, I. Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions. Int. J. Prot. Struct. 2015, 6, 175–190. [Google Scholar] [CrossRef]
- Hopkinson, B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. Lond. 1914, 213, 437–456. [Google Scholar]
- Edwards, D.H.; Thomas, G.O.; Milne, A.; Hooper, G.; Tasker, D. Blast wave measurements close to explosive charges. Shock Waves 1992, 2, 237–243. [Google Scholar] [CrossRef]
- Puckett, A.; Peterson, M. Individual longitudinal Pochhammer-Chree modes in observed experimental signals. Acoust. Res. Lett. Online 2005, 6, 268–273. [Google Scholar] [CrossRef]
- Puckett, A.; Peterson, M. A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides. Ultrasonics 2005, 43, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.C.; Fourney, W.L.; Leiste, H.U. Pressures on Targets From Buried Explosions. Int. J. Blasting Fragm. 2010, 4, 165–192. [Google Scholar]
- Tyas, A.; Ozdemir, Z. On backward dispersion correction of Hopkinson Pressure Bar signals. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 2014, 372, 20130291. [Google Scholar] [CrossRef] [PubMed]
- Cloete, T.; Nurick, G. Blast characterization using a ballistic pendulum with a centrally mounted Hopkinson bar. Int. J. Prot. Struct. 2016, 7, 367–388. [Google Scholar] [CrossRef]
- Cui, X.; Yao, X.; Chen, Y. A lab-scale experiment approach to the measurement of wall pressure from near-field under water explosions by a Hopkinson bar. Shock Vib. 2018, 8273469, 1–15. [Google Scholar] [CrossRef]
- Yao, X.; Cui, X.; Guo, K.; Chen, Y. An experimental approach to the measurement of wall pressure generated by an underwater spark-generated bubble by a Hopkinson bar. Shock Vib. 2019, 2019, 5341317. [Google Scholar]
- Barr, A.; Rigby, S.; Clayton, M. Correction of higher mode Pochhammer–Chree dispersion in experimental blast loading measurements. Int. J. Impact Eng. 2020, 139, 103526. [Google Scholar] [CrossRef]
- Barr, A.D.; Rigby, S.E.; Clarke, S.D.; Farrimond, D.; Tyas, A. Temporally and Spatially Resolved Reflected Overpressure Measurements in the Extreme Near Field. Sensors 2023, 23, 964. [Google Scholar] [CrossRef] [PubMed]
- Rigby, S.E.; Barr, A.D.; Clayton, M. A review of Pochhammer–Chree dispersion in the Hopkinson bar. Proc. Inst. Civ. Eng. Eng. Comput. Mech. 2018, 171, 3–13. [Google Scholar] [CrossRef]
- Blanc, L.; Hanus, J.L.; William-Louis, M.; Le-Roux, B. Experimental and Numerical Investigations of the Characterisation of Reflected Overpressures around a Complex Structure. J. Appl. Fluid Mech. 2016, 121–129. [Google Scholar]
- Courtiaud, S.; Lecysyn, N.; Damamme, G.; Poinsot, T.; Selle, L. Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres. Shock Waves 2019, 29, 339–353. [Google Scholar] [CrossRef]
- Tamba, T.; Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y. Additional protection to a standard wall against blast wave―Effect of the shape and position of the additional wall. Sci. Technol. Energetic Mater. 2021, 82, 75–82. [Google Scholar]
- Bae, J.; Byun, H.; Yoon, T.; Carter, C.D.; Do, H. Novel calibration-free seedless velocimetry using laser-induced shockwave. Exp. Therm. Fluid Sci. 2021, 126, 110384. [Google Scholar] [CrossRef]
- Valentino, T. Analytical model to determine the relevant parameters governing the transferred momentum to spherical indenters by laser-induced shock waves. Opt. Lasers Eng. 2021, 145, 106670. [Google Scholar] [CrossRef]
- Kimblin, C.; Trainham, R.; Capelle, G.A.; Mao, X.; Russo, R.E. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations. AIP Adv. 2017, 7, 095208. [Google Scholar] [CrossRef]
- Isaac Samuelraj, O.; Jagadeesh, G.; Kontis, K. Micro-blast waves using detonation transmission tubing. Shock Waves 2013, 23, 307–316. [Google Scholar] [CrossRef]
- Gajewski, T.; Sielicki, P.W. Experimental study of blast loading behind a building corner. Shock Waves 2020, 30, 385–394. [Google Scholar] [CrossRef]
- Denny, J.; Langdon, G.; Rigby, S.; Dickinson, A.; Batchelor, J. A numerical investigation of blast-structure interaction effects on primary blast injury risk and the suitability of existing injury prediction methods. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
- Fischer, K.; Häring, I.; Riedel, W.; Vogelbacher, G.; Hiermaier, S. Susceptibility, vulnerability, and averaged risk analysis for resilience enhancement of urban areas. Int. J. Prot. Struct. 2016, 7, 45–76. [Google Scholar] [CrossRef]
- Vogelbacher, G.; Häring, I.; Fischer, K.; Riedel, W. Empirical Susceptibility, Vulnerability and Risk Analysis for Resilience Enhancement of Urban Areas to Terrorist Events. Eur. J. Secur. Res. 2016, 1, 151–186. [Google Scholar] [CrossRef]
- Dennis, A.A.; Smyl, D.J.; Stirling, C.G.; Rigby, S.E. A branching algorithm to reduce computational time of batch models: Application for blast analyses. Int. J. Prot. Struct. 2022; ahead of print. [Google Scholar]
Areal Density | Impulse Reduction | |
---|---|---|
Direct Line | No Direct Line | |
28.6% | 93.5% | 87.5% |
22.0% | 88.8% | 88.2% |
17.9% | 85.1% | 86.6% |
Average | 89.1% | 87.4% |
Pressure Sensor ID | Analysis (kPa) | Experiment (kPa) | Percentage Difference |
---|---|---|---|
H1 | 2324 | 2281 | 1.9% |
H2 | 782 | 728 | 6.9% |
H3 | 398 | 312 | 21.6% |
H4 | 303 | 224 | 26.0% |
V1 | 2324 | 2432 | −4.6% |
V2 | 1310 | 1272 | 2.9% |
V3 | 723 | 472 | 34.7% |
V4 | 359 | 252 | 29.8% |
D1 | 2324 | 3613 | −55.5% |
D2 | 920 | 921 | −0.1% |
D3 | 505 | 402 | 20.4% |
D4 | 332 | 238 | 28.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratcliff, A.; Rigby, S.; Clarke, S.; Fay, S. A Review of Blast Loading in the Urban Environment. Appl. Sci. 2023, 13, 5349. https://doi.org/10.3390/app13095349
Ratcliff A, Rigby S, Clarke S, Fay S. A Review of Blast Loading in the Urban Environment. Applied Sciences. 2023; 13(9):5349. https://doi.org/10.3390/app13095349
Chicago/Turabian StyleRatcliff, Adam, Sam Rigby, Sam Clarke, and Stephen Fay. 2023. "A Review of Blast Loading in the Urban Environment" Applied Sciences 13, no. 9: 5349. https://doi.org/10.3390/app13095349
APA StyleRatcliff, A., Rigby, S., Clarke, S., & Fay, S. (2023). A Review of Blast Loading in the Urban Environment. Applied Sciences, 13(9), 5349. https://doi.org/10.3390/app13095349