Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity
Abstract
:1. Introduction
2. Date and Methodology
2.1. Data Selection
2.2. Swarm-C Accelerometer Data Calibration
2.3. Decomposition of Atmospheric Density Based on EOF
2.4. Correlation between Dst, Ap, and Atmospheric Density
3. Results
3.1. Comparison of EOF Density Fields of Different Orders
3.2. Analysis of the Temporal Distribution of Atmospheric Density during Storms
3.3. Analysis of the Spatial Distribution of Atmospheric Density during Geomagnetic Storms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doornbos, E. Thermospheric Density and Wind Determination from Satellite Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Drob, D.; Emmert, J.; Crowley, G.; Picone, J.; Shepherd, G.; Skinner, W.; Hays, P.; Niciejewski, R.; Larsen, M.; She, C. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. Space Phys. 2008, 113, A12304. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Tian, J.; Yin, Z.; Liu, M.; Zheng, W. Atmospheric Density Inversion Based on Swarm-C Satellite Accelerometer. Appl. Sci. 2023, 13, 3610. [Google Scholar] [CrossRef]
- Roble, R.; Ridley, E. An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. 1987, 5, 369–382. [Google Scholar]
- Mehta, P.M.; Linares, R. A methodology for reduced order modeling and calibration of the upper atmosphere. Space Weather 2017, 15, 1270–1287. [Google Scholar] [CrossRef]
- Sur, D.; Ray, S.; Paul, A. Impact of CME and HSSW driven geomagnetic storms on thermosphere and ionosphere as observed from mid-latitudes. Adv. Space Res. 2021, 68, 1441–1460. [Google Scholar] [CrossRef]
- Amaechi, P.O.; Oyeyemi, E.; Akala, A.; Messanga, H.; Panda, S.; Seemala, G.K.; Oyedokun, J.; Fleury, R.; Amory-Mazaudier, C. Ground-Based GNSS and C/NOFS Observations of Ionospheric Irregularities Over Africa: A Case Study of the 2013 St. Patrick’s Day Geomagnetic Storm. Space Weather 2021, 19, e2020SW002631. [Google Scholar] [CrossRef]
- Emmert, J. Thermospheric mass density: A review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Yang, B.; Liu, S. Evaluation of empirical atmospheric models using Swarm-C satellite data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Bruinsma, S.; Biancale, R. Total densities derived from accelerometer data. J. Spacecr. Rocket. 2003, 40, 230–236. [Google Scholar] [CrossRef]
- Sutton, E.K. Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite Accelerometer Data. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2008. [Google Scholar]
- Mehta, P.M.; McLaughlin, C.A.; Sutton, E.K. Drag coefficient modeling for grace using Direct Simulation Monte Carlo. Adv. Space Res. 2013, 52, 2035–2051. [Google Scholar] [CrossRef]
- Pilinski, M.D.; Argrow, B.M.; Palo, S.E. Semiempirical model for satellite energy-accommodation coefficients. J. Spacecr. Rocket. 2010, 47, 951–956. [Google Scholar] [CrossRef]
- Pilinski, M.D.; McNally, R.L.; Bowman, B.A.; Palo, S.E.; Forbes, J.M.; Davis, B.L.; Moore, R.G.; Kemble, K.; Koehler, C.; Sanders, B. Comparative analysis of satellite aerodynamics and its application to space-object identification. J. Spacecr. Rocket. 2016, 53, 876–886. [Google Scholar] [CrossRef]
- Reigber, C.; Lühr, H.; Schwintzer, P. CHAMP mission status. Adv. Space Res. 2002, 30, 129–134. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Mehta, P.M.; Walker, A.C.; Sutton, E.K.; Godinez, H.C. New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 2017, 15, 558–576. [Google Scholar] [CrossRef]
- Emmert, J.; McDonald, S.; Drob, D.; Meier, R.; Lean, J.; Picone, J. Attribution of interminima changes in the global thermosphere and ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 6657–6688. [Google Scholar] [CrossRef]
- Visser, P.; Doornbos, E.; van den IJssel, J.; Da Encarnação, J.T. Thermospheric density and wind retrieval from Swarm observations. Earth Planets Space 2013, 65, 1319–1331. [Google Scholar] [CrossRef]
- Lühr, H.; Marker, S. High-latitude thermospheric density and wind dependence on solar and magnetic activity. In Climate and Weather of the Sun-Earth System (CAWSES); Springer: Berlin/Heidelberg, Germany, 2013; pp. 189–205. [Google Scholar]
- Emmert, J. Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. J. Geophys. Res. Space Phys. 2015, 120, 2940–2950. [Google Scholar] [CrossRef]
- Maggiolo, R.; Hamrin, M.; De Keyser, J.; Pitkänen, T.; Cessateur, G.; Gunell, H.; Maes, L. The delayed time response of geomagnetic activity to the solar wind. J. Geophys. Res. Space Phys. 2017, 122, 11109–11127. [Google Scholar] [CrossRef]
- Niu, J.; Fang, H.; Weng, L. Correlations between solar activity and thermospheric density. Chin. J. Space Sci. 2014, 34, 73–80. [Google Scholar] [CrossRef]
- Earle, G.; Davidson, R.; Heelis, R.; Coley, W.; Weimer, D.R.; Makela, J.; Fisher, D.; Gerrard, A.; Meriwether, J. Low latitude thermospheric responses to magnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 3866–3876. [Google Scholar] [CrossRef]
- Lammer, H.; Güdel, M.; Kulikov, Y.; Ribas, I.; Zaqarashvili, T.V.; Khodachenko, M.L.; Kislyakova, K.G.; Gröller, H.; Odert, P.; Leitzinger, M.; et al. Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planets Space 2012, 64, 179–199. [Google Scholar] [CrossRef]
- Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 2021, 19, e2020SW002641. [Google Scholar] [CrossRef]
- Menvielle, M.; Iyemori, T.; Marchaudon, A.; Nosé, M. Geomagnetic indices. In Geomagnetic Observations and Models; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–228. [Google Scholar]
- Matzka, J.; Bronkalla, O.; Tornow, K.; Elger, K.; Stolle, C. Geomagnetic Kp Index; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2021. [Google Scholar]
- Rhoden, E.; Forbes, J.; Marcos, F. The influence of geomagnetic and solar variabilities on lower thermosphere density. J. Atmos. Sol. Terr. Phys. 2000, 62, 999–1013. [Google Scholar] [CrossRef]
- Temmer, M.; Krauss, S.; Veronig, A.; Baur, O.; Lammer, H. Statistical results for the thermospheric and geomagnetic response to interplanetary coronal mass ejections. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015; p. 1533. [Google Scholar]
- Zesta, E.; Oliveira, D.M. Thermospheric heating and cooling times during geomagnetic storms, including extreme events. Geophys. Res. Lett. 2019, 46, 12739–12746. [Google Scholar] [CrossRef]
- Palacios, J.; Guerrero, A.; Cid, C.; Saiz, E.; Cerrato, Y. Defining scale thresholds for geomagnetic storms through statistics. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 367, 1–19. [Google Scholar]
- Xu, J.; Wang, W.; Zhang, S.; Liu, X.; Yuan, W. Multiday thermospheric density oscillations associated with variations in solar radiation and geomagnetic activity. J. Geophys. Res. Space Phys. 2015, 120, 3829–3846. [Google Scholar] [CrossRef]
- Gonzalez, W.; Joselyn, J.-A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.; Vasyliunas, V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Echer, E.; Gonzalez, W.; Tsurutani, B. Statistical studies of geomagnetic storms with peak Dst ≤ −50 nT from 1957 to 2008. J. Atmos. Sol. Terr. Phys. 2011, 73, 1454–1459. [Google Scholar] [CrossRef]
- Radasky, W. Overview of the impact of intense geomagnetic storms on the US high voltage power grid. In Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 14–19 August 2011; pp. 300–305. [Google Scholar]
- Ding, F.; Wan, W.; Ning, B.; Wang, M. Large-scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29–30 October 2003. J. Geophys. Res. Space Phys. 2007, 112, A06309. [Google Scholar] [CrossRef]
- Plunkett, S. The Extreme Solar Storms of October to November 2003; Naval Research Lab Washington DC Space Science Division: Washington, DC, USA, 2005. [Google Scholar]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- van den IJssel, J.; Doornbos, E.; Iorfida, E.; March, G.; Siemes, C.; Montenbruck, O. Thermosphere densities derived from Swarm GPS observations. Adv. Space Res. 2020, 65, 1758–1771. [Google Scholar] [CrossRef]
- Bezděk, A. Calibration of accelerometers aboard GRACE satellites by comparison with POD-based nongravitational accelerations. J. Geodyn. 2010, 50, 410–423. [Google Scholar] [CrossRef]
- Klinger, B.; Mayer-Gürr, T. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016. Adv. Space Res. 2016, 58, 1597–1609. [Google Scholar] [CrossRef]
- Sentman, L.H. Free Molecule Flow Theory and Its Application to the Determination of Aerodynamic Forces; Lockheed Missiles and Space Co., Inc.: Sunnyvale, CA, USA,, 1961. [Google Scholar]
- Navarra, A.; Simoncini, V. A Guide to Empirical Orthogonal Functions for Climate Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kim, K.-Y.; Hamlington, B.; Na, H. Theoretical foundation of cyclostationary EOF analysis for geophysical and climatic variables: Concepts and examples. Earth-Sci. Rev. 2015, 150, 201–218. [Google Scholar] [CrossRef]
- van den IJssel, J.; Encarnação, J.; Doornbos, E.; Visser, P. Precise science orbits for the Swarm satellite constellation. Adv. Space Res. 2015, 56, 1042–1055. [Google Scholar] [CrossRef]
- Chen, G.m.; Xu, J.; Wang, W.; Burns, A.G. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies. J. Geophys. Res. Space Phys. 2014, 119, 7928–7939. [Google Scholar] [CrossRef]
Order Number | The Eigenvalue (×10−20) | Variance Contribution Rate | Cumulative Variance Contribution Rate |
---|---|---|---|
First order | 0.2408 | 0.9804 | 0.9804 |
Second order | 0.0033 | 0.0135 | 0.9939 |
Third order | 0.0010 | 0.0042 | 0.9980 |
Fourth order | 0.0003 | 0.0014 | 0.9994 |
Order Number | The Lower Limit of Error | The Upper Limit of Error |
---|---|---|
1 | 1.84071 × 10−21 | 2.97603 × 10−21 |
2 | 2.52995 × 10−23 | 4.09037 × 10−23 |
3 | 7.81714 × 10−24 | 1.26386 × 10−23 |
4 | 2.57967 × 10−24 | 4.17076 × 10−24 |
5 | 6.23159 × 10−25 | 1.00751 × 10−24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Wang, L.; Ge, L.; Tian, J.; Yin, Z.; Liu, M.; Zheng, W. Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity. Appl. Sci. 2023, 13, 5564. https://doi.org/10.3390/app13095564
Yin L, Wang L, Ge L, Tian J, Yin Z, Liu M, Zheng W. Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity. Applied Sciences. 2023; 13(9):5564. https://doi.org/10.3390/app13095564
Chicago/Turabian StyleYin, Lirong, Lei Wang, Lijun Ge, Jiawei Tian, Zhengtong Yin, Mingzhe Liu, and Wenfeng Zheng. 2023. "Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity" Applied Sciences 13, no. 9: 5564. https://doi.org/10.3390/app13095564
APA StyleYin, L., Wang, L., Ge, L., Tian, J., Yin, Z., Liu, M., & Zheng, W. (2023). Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity. Applied Sciences, 13(9), 5564. https://doi.org/10.3390/app13095564