Author Contributions
Conceptualization, H.W. (Haibo Wang) and H.W. (Hengxuan Wu); methodology, H.W. (Hengxuan Wu); software, C.Z. and L.H.; validation, H.W. (Haibo Wang); formal analysis, H.W. (Haibo Wang) and C.Z.; data curation, H.W. (Hengxuan Wu); writing—original draft preparation, H.W. (Haibo Wang) and H.W. (Hengxuan Wu); writing—review and editing, H.W. (Hengxuan Wu); visualization, C.Z.; supervision, H.W. (Haibo Wang). All authors have read and agreed to the published version of the manuscript.
Figure 1.
Yujiang Bridge facade.
Figure 1.
Yujiang Bridge facade.
Figure 2.
Structural drawing of the steel anchor box of the Yujiang River Bridge.
Figure 2.
Structural drawing of the steel anchor box of the Yujiang River Bridge.
Figure 3.
The finite element model of the half-section of the beam section where the M16 cable is located.
Figure 3.
The finite element model of the half-section of the beam section where the M16 cable is located.
Figure 4.
(a) Inner-web-weld-numbering diagram; (b) outer-web-weld-numbering diagram.
Figure 4.
(a) Inner-web-weld-numbering diagram; (b) outer-web-weld-numbering diagram.
Figure 5.
(a) Shear-stress distribution of the weld between the inner web of the main beam and the steel anchor-box-support plate; (b) shear-stress distribution of the weld between the outer web of the main beam and the steel anchor-box-support plate.
Figure 5.
(a) Shear-stress distribution of the weld between the inner web of the main beam and the steel anchor-box-support plate; (b) shear-stress distribution of the weld between the outer web of the main beam and the steel anchor-box-support plate.
Figure 6.
Von Mises stress-contour map of supporting plate N1.
Figure 6.
Von Mises stress-contour map of supporting plate N1.
Figure 7.
Von Mises stress-contour map of inner-web F1.
Figure 7.
Von Mises stress-contour map of inner-web F1.
Figure 8.
Von Mises stress-contour map of pressure plate N7.
Figure 8.
Von Mises stress-contour map of pressure plate N7.
Figure 9.
Test-model-design flow chart.
Figure 9.
Test-model-design flow chart.
Figure 10.
Comparison diagram of shear stress on connection weld between supporting plate N1 and inner web of main girder.
Figure 10.
Comparison diagram of shear stress on connection weld between supporting plate N1 and inner web of main girder.
Figure 11.
Comparison diagram of shear stress on connection weld between supporting plate N2 and inner web of main girder.
Figure 11.
Comparison diagram of shear stress on connection weld between supporting plate N2 and inner web of main girder.
Figure 12.
Fatigue-test-loading diagram.
Figure 12.
Fatigue-test-loading diagram.
Figure 13.
Stress-test-value diagram of inner web of main girder F1 (MPa).
Figure 13.
Stress-test-value diagram of inner web of main girder F1 (MPa).
Figure 14.
Stress-test-value diagram of support plate N1 (MPa).
Figure 14.
Stress-test-value diagram of support plate N1 (MPa).
Figure 15.
Stress-test-value diagram of pressure plate N7 (MPa). (a) Top surface of pressure plate N7; (b) bottom surface of pressure plate N7.
Figure 15.
Stress-test-value diagram of pressure plate N7 (MPa). (a) Top surface of pressure plate N7; (b) bottom surface of pressure plate N7.
Figure 16.
The curves of the von Mises equivalent stress-test values of some measuring points with the changes in cyclic loading times. (a) measuring point of inner web F1; (b) measuring point of support plate N1.
Figure 16.
The curves of the von Mises equivalent stress-test values of some measuring points with the changes in cyclic loading times. (a) measuring point of inner web F1; (b) measuring point of support plate N1.
Figure 17.
Influence of plate-thickness design on the force characteristics of the anchor-box structure.
Figure 17.
Influence of plate-thickness design on the force characteristics of the anchor-box structure.
Figure 18.
Influence of plate-length design on the force characteristics of the anchor-box structure.
Figure 18.
Influence of plate-length design on the force characteristics of the anchor-box structure.
Figure 19.
BP neural network. Note: wij and vik denote the weights from the input layer to the hidden layer and from the hidden layer to the output layer, respectively; θj and Ok are the thresholds of the hidden layer and the output layer, respectively.
Figure 19.
BP neural network. Note: wij and vik denote the weights from the input layer to the hidden layer and from the hidden layer to the output layer, respectively; θj and Ok are the thresholds of the hidden layer and the output layer, respectively.
Figure 20.
Flow chart of PSO-BP model.
Figure 20.
Flow chart of PSO-BP model.
Figure 21.
Correlation of predicted output data with actual output data for training, validation, and testing phases.
Figure 21.
Correlation of predicted output data with actual output data for training, validation, and testing phases.
Table 1.
The main weld-cable-force transmission and proportion of the built-in double-fixed steel anchor cable-girder box.
Table 1.
The main weld-cable-force transmission and proportion of the built-in double-fixed steel anchor cable-girder box.
Welding-Seam Number | Weld Length | Transmitted Cable-Force | Designed Cable-Force Value | Proportion of Shared Cable Force |
---|
(m) | (kN) | (kN) | (%) |
---|
N1–F1 | 1.71 | 1089.59 | 4600 | 23.68 |
N2–F1 | 1.71 | 1092.27 | 23.74 |
N1–F2 | 1.71 | 1040.64 | 22.62 |
N2–F2 | 1.71 | 1059.12 | 23.02 |
Table 2.
Material and mechanical properties of Q370qD.
Table 2.
Material and mechanical properties of Q370qD.
Thickness (mm) | Yield Stress | Ultimate Tensile Stress | Elongation |
---|
(Mpa) | (MPa) | (%) |
---|
16 | 556 | 644 | 21 |
20 | 459 | 564 | 23 |
30 | 441 | 548 | 27 |
Table 3.
Load grades and load values in static-loading stage of fatigue test.
Table 3.
Load grades and load values in static-loading stage of fatigue test.
Test Phase | Validation Phase | Destruction Phase |
---|
Number of fatigue loads/10,000 cycles | 0~200 | 200~300 |
Static load test classification | 1 | 0 | 0 |
2 | 170 | 170 |
3 | 320 | 320 |
4 | 470 | 470 |
8 | 620 | 620 |
6 | 770 | 770 |
7 | 920 | 920 |
8 * | - | 1050 * |
Table 4.
Equivalent stress-test values of some measuring points after cyclic fatigue loading.
Table 4.
Equivalent stress-test values of some measuring points after cyclic fatigue loading.
Point Number | Measured Stresses |
---|
0 m | 0.50 m | 1.00 m | 1.50 m | 2.00 m | 2.50 m | 3.00 m |
---|
F1–1 | 20.9 | 20.5 | 20.11 | 21.12 | 20.13 | 23.45 | 23.33 |
F1–2 | 21.97 | 21.96 | 22.8 | 22.24 | 22.44 | 23.51 | 24.01 |
F1–3 | 25.5 | 25.98 | 26.36 | 26.57 | 26.19 | 29.61 | 29.78 |
F2–1 | 18.49 | 18.58 | 19.66 | 18.7 | 18.3 | 21.19 | 21.30 |
F2–2 | 17.30 | 18.41 | 18.12 | 17.91 | 17.29 | 20.11 | 20.33 |
F2–3 | 22.20 | 22.3 | 22.74 | 23.26 | 22.61 | 26.12 | 26.73 |
N1–1 | 18.08 | 19.17 | 18.86 | 18.4 | 19.96 | 20.03 | 19.9 |
N1–2 | 41.95 | 44.05 | 44.57 | 41 | 43.5 | 44.01 | 46.45 |
N1–3 | 34.66 | 33.54 | 36.2 | 34.65 | 34.31 | 38.21 | 38.05 |
N2–1 | 18.13 | 19.08 | 18.81 | 18.18 | 18.12 | 19.12 | 19.92 |
N2–2 | 39.94 | 39.39 | 39.09 | 38.64 | 38.27 | 44.16 | 44.95 |
N2–3 | 34.77 | 34.01 | 34.71 | 34.91 | 36.64 | 39.79 | 40.96 |
N5–1 | 7.93 | 8.05 | 8.57 | 8.66 | 8.34 | 9.67 | 9.26 |
N5–2 | 11.65 | 11.75 | 12.69 | 12.06 | 11.91 | 13.77 | 14.09 |
N5–3 | 10.93 | 11.39 | 11.54 | 11.37 | 11.98 | 12.44 | 13.16 |
Table 5.
Designed thickness value of each plate.
Table 5.
Designed thickness value of each plate.
No. | Weld Name | Original Design Thickness (mm) | Thickness Values (mm) |
---|
1 | Support plate (N1) | 32 | 30, 32, 34 |
2 | Support plate (N2) | 32 | 30, 32, 34 |
3 | Pressure plate (N7) | 40 | 38, 40, 42, 44, 46 |
Table 6.
Designed length values of each plate.
Table 6.
Designed length values of each plate.
No. | Weld Name | Original Design Length (mm) | Length Values (mm) |
---|
1 | N1–F1, N1–F2 | 1710 | 1600, 1710, 1800, 1900, 2000 |
2 | N2–F1, N2–F2 | 1710 | 1600, 1710, 1800, 1900, 2000 |
Table 7.
Input parameters for the calculation of the force-transmission state of the weld.
Table 7.
Input parameters for the calculation of the force-transmission state of the weld.
Parameters | Values (mm) |
---|
Support plates N1 and N2, thickness | 30, 32, 34 |
Pressure plate N7, thickness | 38, 40, 42, 44, 46 |
Support plates N1, N2, length | 1600, 1710, 1800, 1900, 2000 |
Design load | 4000, 4600, 5000, 6000, 7000 |
Table 8.
Statistical parameters of input variables.
Table 8.
Statistical parameters of input variables.
Statistical Parameters of Input Variables |
---|
Dataset | Sample Size | Statistical Parameters | X1 Thickness of N1, N2 | X2 Length of N1, N2 | X3 Thickness of N7 | X4 Designed Load-Bearing Cable Force |
---|
Training set | 263 | Max | 34 | 2000 | 46 | 7000 |
Min | 30 | 1600 | 38 | 4000 |
Average | 32.027 | 1803.064 | 42.027 | 5371.212 |
Stdev.s | 1.636 | 159.026 | 2.780 | 1068.271 |
Validation set | 56 | Max | 34 | 2000 | 46 | 7000 |
Min | 30 | 1600 | 38 | 4000 |
Average | 32.158 | 1804.737 | 42.000 | 5344.737 |
Stdev.s | 1.667 | 142.748 | 3.013 | 1064.693 |
Test set | 56 | Max | 34 | 2000 | 46 | 7000 |
Min | 30 | 1600 | 38 | 4000 |
Average | 31.632 | 1780.263 | 41.684 | 5418.421 |
Stdev.s | 1.636 | 137.930 | 3.103 | 1063.128 |
Table 9.
Statistical parameters of output variables.
Table 9.
Statistical parameters of output variables.
Statistical Parameters of Output Variables |
---|
Dataset | Sample Size | Statistical Parameters | μ1 | p1 | τmax1 | μ2 | p2 | τmax2 | μ3 | p3 | τmax3 | μ4 | p4 | τmax4 | P |
---|
Training set | 263 | Max | 2.008 | 24.84% | 60.002 | 2.286 | 23.16% | 61.934 | 2.183 | 24.76% | 62.298 | 2.103 | 24.11% | 58.313 | 96.49% |
Min | 1.781 | 23.01% | 27.738 | 1.954 | 21.69% | 28.974 | 1.852 | 22.63% | 29.681 | 1.783 | 21.82% | 26.709 | 89.42% |
Average | 1.892 | 0.240 | 40.957 | 2.078 | 0.226 | 42.380 | 2.025 | 0.235 | 43.032 | 1.934 | 0.229 | 40.147 | 92.89% |
Stdev.s | 0.065 | 0.005 | 8.555 | 0.090 | 0.004 | 8.807 | 0.088 | 0.004 | 8.947 | 0.081 | 0.003 | 8.452 | 1.42% |
Validation set | 56 | Max | 1.991 | 24.82% | 58.313 | 2.283 | 23.16% | 60.067 | 2.171 | 24.21% | 61.040 | 2.089 | 23.26% | 57.194 | 95.33% |
Min | 1.782 | 23.04% | 27.853 | 1.969 | 21.78% | 29.103 | 1.861 | 22.66% | 29.883 | 1.796 | 22.47% | 26.873 | 90.65% |
Average | 1.893 | 0.240 | 40.667 | 2.091 | 0.226 | 42.055 | 2.024 | 0.236 | 42.734 | 1.934 | 0.229 | 39.766 | 93.05% |
Stdev.s | 0.058 | 0.006 | 8.886 | 0.097 | 0.004 | 9.200 | 0.093 | 0.004 | 9.218 | 0.085 | 0.002 | 8.843 | 1.51% |
Test set | 56 | Max | 2.005 | 24.84% | 59.769 | 2.268 | 23.13% | 61.638 | 2.183 | 24.20% | 62.108 | 2.103 | 23.28% | 57.905 | 95.35% |
Min | 1.789 | 23.02% | 29.799 | 1.957 | 21.70% | 30.923 | 1.868 | 22.65% | 30.760 | 1.803 | 22.37% | 28.899 | 90.33% |
Average | 1.885 | 0.238 | 42.492 | 2.081 | 0.225 | 43.975 | 2.024 | 0.234 | 44.577 | 1.945 | 0.228 | 41.670 | 92.54% |
Stdev.s | 0.057 | 0.005 | 8.067 | 0.089 | 0.004 | 8.192 | 0.092 | 0.004 | 8.473 | 0.079 | 0.003 | 7.901 | 1.47% |
Table 10.
PSO-BP algorithm’s performance-evaluation results.
Table 10.
PSO-BP algorithm’s performance-evaluation results.
| Training Set | Validation Set | Test Set |
---|
MSE | 0.12119 | 0.12250 | 0.07065 |
NS | 0.99970 | 0.99972 | 0.99984 |
Table 11.
Comparison of calculated values and predicted results.
Table 11.
Comparison of calculated values and predicted results.
| Input Variable Array 1 | Input Variable Array 2 | Input Variable Array 3 |
---|
Calculated Value | Predicted Value | Calculated Value | Predicted Value | Calculated Value | Predicted Value |
---|
N1–F1 | μ1 | 1.902 | 1.915 | 1.865 | 1.867 | 1.840 | 1.839 |
p1 | 23.87% | 23.88% | 23.69% | 23.65% | 24.57% | 24.60% |
τmax1 | 32.433 | 32.314 | 35.444 | 35.387 | 36.223 | 36.059 |
N1–F2 | μ2 | 2.068 | 2.069 | 2.010 | 2.009 | 2.036 | 2.032 |
p2 | 22.56% | 22.60% | 22.62% | 22.60% | 23.12% | 23.11% |
τmax2 | 33.665 | 33.699 | 36.941 | 36.781 | 37.592 | 37.505 |
N2–F1 | μ3 | 2.091 | 2.064 | 1.974 | 1.982 | 2.007 | 2.010 |
p3 | 23.17% | 23.17% | 23.39% | 23.45% | 24.04% | 24.09% |
τmax3 | 33.806 | 33.817 | 37.354 | 37.430 | 38.484 | 38.598 |
N2–F2 | μ4 | 1.975 | 1.979 | 1.881 | 1.880 | 1.893 | 1.891 |
p4 | 22.78% | 22.72% | 22.70% | 22.74% | 23.16% | 23.14% |
τmax4 | 31.864 | 31.983 | 34.863 | 34.882 | 35.010 | 34.845 |
P | 92.38% | 92.40% | 92.40% | 92.44% | 94.89% | 94.90% |