Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Musts and Their Wine Samples
2.2. Chemicals and Reagents
2.3. Analytical Determinations
2.3.1. UV-Vis Spectrophotometric Determinations
2.3.2. Individual Phenolic Composition by UHPLC-ESI/HRMS
2.4. Data Processing
3. Results and Discussion
3.1. Bioactive Characteristics of the White and Red Grape Musst and Wines
3.2. Individual Phenolic Compounds in White and Red Grape Must and Wine by UHPLC–ESI/HRMS
3.3. Discrimination of the White and Red Musts and the Corresponding Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bessa-Pereira, C.; Dias, R.; Brandão, E.; Mateus, N.; de Freitas, V.; Soares, S.; Pérez-Gregorio, R.; Bessa-Pereira, C.; Dias, R.; Brandão, E.; et al. Eat Tasty and Healthy: Role of Polyphenols in Functional Foods. In Functional Foods Phytochemicals Health Promoting Potential; IntechOpen: London, UK, 2021; pp. 1–32. [Google Scholar] [CrossRef]
- Ali, A.; Yu, L.; Kousar, S.; Khalid, W.; Maqbool, Z.; Aziz, A.; Arshad, M.S.; Aadil, R.M.; Trif, M.; Riaz, S.; et al. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Front. Nutr. 2022, 9, 3015. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, Z.; Arshad, M.S.; Ali, A.; Aziz, A.; Khalid, W.; Afzal, M.F.; Bangar, S.P.; Addi, M.; Hano, C.; Lorenzo, J.M. Potential Role of Phytochemical Extract from Saffron in Development of Functional Foods and Protection of Brain-Related Disorders. Oxid. Med. Cell. Longev. 2022, 2022, 6480590. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Riaz, S.; Sameen, A.; Naumovski, N.; Iqbal, M.W.; Rehman, A.; Mehany, T.; Zeng, X.A.; Manzoor, M.F. The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes 2022, 10, 2014. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Jelena, C.H.; Giorgio, R.; Justyna, G.; Neda, M.D.; Natasa, S.; Artur, B.; Giuseppe, G. Beneficial effects of polyphenols on chronic diseases and ageing. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 69–102. [Google Scholar] [CrossRef]
- Riaz, M.; Khalid, R.; Afzal, M.; Anjum, F.; Fatima, H.; Zia, S.; Rasool, G.; Egbuna, C.; Mtewa, A.G.; Uche, C.Z.; et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci. Nutr. 2023, in press. [Google Scholar] [CrossRef]
- Torregrosa, L.; Vialet, S.; Adivèze, A.; Iocco-Corena, P.; Thomas, M.R. Grapevine (Vitis vinifera L.). Methods Mol. Biol. 2015, 1224, 177–194. [Google Scholar] [CrossRef]
- Pezzuto, J.M. Grapes and Human Health: A Perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H. Bin Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Banc, R.; Popa, D.S.; Cozma-Petruţ, A.; Filip, L.; Kiss, B.; Fărcaş, A.; Nagy, A.; Miere, D.; Loghin, F. Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants 2022, 11, 1347. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.F.; Arif, Z.; Kabir, A.; Mehmood, I.; Munir, D.; Razzaq, A.; Ali, A.; Goksen, G.; Coşier, V.; Ahmad, N.; et al. Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Front. Nutr. 2022, 9, 2150. [Google Scholar] [CrossRef]
- Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Not. Bot. Horti Agrobot. 2020, 48, 716–734. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Santi, R.L.; Liprandi, A.S.; Baranchuk, A. What’s in wine? A clinician’s perspective. Trends Cardiovasc. Med. 2019, 29, 97–106. [Google Scholar] [CrossRef]
- Burin, V.M.; Ferreira-Lima, N.E.; Panceri, C.P.; Bordignon-Luiz, M.T. Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchem. J. 2014, 114, 155–163. [Google Scholar] [CrossRef]
- Beara, I.N.; Torović, L.D.; Pintać, D.; Majkić, T.M.; Orčić, D.Z.; Mimica-Dukić, N.M.; Lesjak, M.M. Polyphenolic profile, antioxidant and neuroprotective potency of grape juices and wines from Fruška Gora region (Serbia). Int. J. Food Prop. 2018, 20, S2552–S2568. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L.; Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2020; pp. 1–27. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Mitić, M.N.; Souquet, J.M.; Obradović, M.V.; Mitić, S.S. Phytochemical profiles and antioxidant activities of Serbian table and wine grapes. Food Sci. Biotechnol. 2012, 21, 1619–1626. [Google Scholar] [CrossRef]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Urcan, D.E.; Lung, M.L.; Giacosa, S.; Torchio, F.; Ferrandino, A.; Vincenzi, S.; Rió Segade, S.; Pop, N.; Rolle, L. Phenolic Substances, Flavor Compounds, and Textural Properties of Three Native Romanian Wine Grape Varieties. Int. J. Food Prop. 2015, 19, 76–98. [Google Scholar] [CrossRef]
- Hernández-Hierro, J.M.; Quijada-Morín, N.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 2014, 146, 41–47. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.H.; Huang, W.D. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Liazid, A.; Palma, M.; Puertas, B.; González-Barrio, R.; Gil-Izquierdo, Á.; García-Barroso, C.; Cantos-Villar, E. Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chem. 2009, 112, 949–955. [Google Scholar] [CrossRef]
- Nel, A.P. Tannins and Anthocyanins: From Their Origin to Wine Analysis—A Review. S. Afr. J. Enol. Vitic. 2018, 39, 1–20. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N.; De Freitas, V. A review of the current knowledge of red wine colour. OENO One 2017, 51, 1–21. [Google Scholar] [CrossRef]
- Fredes, S.N.; Ruiz, L.; Recio, J.A. Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images. Remote Sens. 2021, 13, 4951. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Peña-Neira, A. Management of Astringency in Red Wines. In Red Wine Technology; Academic Press: Cambridge, MA, USA, 2019; pp. 257–272. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Method OIV-MA-AS2-10: Folin-Ciocalteu Index. In Recueil International des Methodes d’Analyses—OIV/Compendium of International Methods of Analysis; OIV: Paris, France, 2009; Volume 1. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Tardea, C. Chimia Si Analiza Vinului; Ion Ionescu de la Brad Publishing House: Iasi, Romania, 2007. [Google Scholar]
- Ribereau-Gayon, P.; Stonestreet, E. Determination of anthocyanins in red wine. Bull. Soc.Chim. 1965, 9, 2649–2652. [Google Scholar]
- Geana, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Characterization and Classification of Wines Based on Spectrophotometric Determination of Wine Bioactive Properties. CPQ Nutr. 2019, 3, 1–12. [Google Scholar]
- Onache, P.A.; Geana, E.I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Ginjom, I.R.; D’Arcy, B.R.; Caffin, N.A.; Gidley, M.J. Phenolic Contents and Antioxidant Activities of Major Australian Red Wines throughout the Winemaking Process. J. Agric. Food Chem. 2010, 58, 10133–10142. [Google Scholar] [CrossRef] [PubMed]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.L. Antioxidant Capacities and Phenolics Levels of French Wines from Different Varieties and Vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Burin, V.M.; Falcão, L.D.; Chaves, E.S.; Gris, E.F.; Preti, L.F.; Bordignon-Luiz, M.T. Phenolic composition, colour, antioxidant activity and mineral profile of Cabernet Sauvignon wines. Int. J. Food Sci. Technol. 2010, 45, 1505–1512. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Sen, I.; Tokatli, F. Authenticity of wines made with economically important grape varieties grown in Anatolia by their phenolic profiles. Food Control 2014, 46, 446–454. [Google Scholar] [CrossRef]
- Anli, R.E.; Vural, N. Antioxidant phenolic substances of Turkish red wines from different wine regions. Molecules 2009, 14, 289–297. [Google Scholar] [CrossRef]
- Geana, E.I.; Marinescu, A.; Iordache, A.M.; Sandru, C.; Ionete, R.E.; Bala, C. Differentiation of Romanian Wines on Geographical Origin and Wine Variety by Elemental Composition and Phenolic Components. Food Anal. Methods 2014, 7, 2064–2074. [Google Scholar] [CrossRef]
- Woraratphoka, J.; Intarapichet, K.O.; Indrapichate, K. Phenolic compounds and antioxidative properties of selected wines from the northeast of Thailand. Food Chem. 2007, 104, 1485–1490. [Google Scholar] [CrossRef]
- Ortega, T.; De La Hera, E.; Carretero, M.E.; Gómez-Serranillos, P.; Naval, M.V.; Villar, A.M.; Prodanov, M.; Vacas, V.; Arroyo, T.; Hernández, T.; et al. Influence of grape variety and their phenolic composition on vasorelaxing activity of young red wines. Eur. Food Res. Technol. 2008, 227, 1641–1650. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Costinel, D.; Marinescu, A.; Ionete, R.E.; Bala, C. Characterization of Wines by Trans-Resveratrol Concentration: A Case Study of Romanian Varieties. Anal. Lett. 2014, 47, 1737–1746. [Google Scholar] [CrossRef]
- Fanzone, M.; Peña-Neira, A.; Jofré, V.; Assof, M.; Zamora, F. Phenolic characterization of malbec wines from mendoza province (Argentina). J. Agric. Food Chem. 2010, 58, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Natividade, M.M.P.; Corrêa, L.C.; de Souza, S.V.C.; Pereira, G.E.; de Oliveira Lima, L.C. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 2013, 110, 665–674. [Google Scholar] [CrossRef]
Variables | TPFs | TCs | TTs | AA |
---|---|---|---|---|
TPFs (mg GAE/L) | 1 | 0.628 | 0.658 | 0.626 |
TCs (mg/L) | 0.628 | 1 | 0.902 | 0.878 |
TTs (mg/L) | 0.658 | 0.902 | 1 | 0.992 |
AA (mM TE/L) | 0.626 | 0.878 | 0.992 | 1 |
Variables | TPFs (mg GAE/L) | Tas (mg/L) | TCs (mg/L) | TTs (mg/L) | AA (mM TE/L) |
---|---|---|---|---|---|
TPFs (mg GAE/L) | 1 | 0.450 | 0.722 | 0.401 | 0.936 |
Tas, mg/L | 0.450 | 1 | 0.292 | 0.622 | 0.382 |
TCs, mg/L | 0.722 | 0.292 | 1 | 0.052 | 0.822 |
TTs, mg/ | 0.401 | 0.622 | 0.052 | 1 | 0.144 |
AA, mM TE/L | 0.936 | 0.382 | 0.822 | 0.144 | 1 |
No | Compound | Retention Time (min) | Formula | Exact Mass | Accurate Mass (M-H)− | Experimental Adduct Ion (m/z) | Mass Fragments |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
1 | Gallic acid | 1.94 | C7H6O5 | 170.0215 | 169.0142 | 169.0133 | 125.0231 |
2 | 3,4-Dihydroxybenzoic acid | 4.25 | C7H6O4 | 154.0266 | 153.0193 | 153.0184 | 109.0281 |
3 | 4-Hydroxybenzoic acid | 6.96 | C7H6O3 | 138.0316 | 137.0243 | 137.0233 | 118.9650, 96.9588, 71.0124 |
4 | t-Ferulic acid | 8.89 | C10H10O4 | 194.0579 | 193.0506 | 193.0499 | 178.0262, 134.0361 |
5 | Chlorogenic acid | 7.90 | C16H18O9 | 354.0950 | 353.0877 | 353.0880 | 191.0553 |
6 | Caffeic acid | 7.98 | C9H8O4 | 180.0422 | 179.0349 | 179.0343 | 135.044 |
7 | Syringic acid | 8.39 | C9H10O5 | 198.0528 | 197.0455 | 197.0450 | 182.0212, 166.9976, 153.0547, 138.0311, 123.0075 |
8 | Cinnamic acid | 8.37 | C9H8O2 | 148.0524 | 147.0451 | 147.0439 | 119.0489, 103.0387 |
9 | Ellagic acid | 9.71 | C14H6O8 | 302.0062 | 300.9989 | 300.9993 | 300.9990 |
10 | p-Coumaric acid | 8.69 | C9H8O3 | 164.0473 | 163.0400 | 163.0389 | 119.0489 |
Flavonoids | |||||||
11 | Catechin | 7.53 | C15H14O6 | 290.0790 | 289.0717 | 289.0716 | 109.0282, 123.0349, 125.0232, 137.0232, 151.0390, 203.0708 |
12 | Epi-catechin | 8.12 | C15H14O6 | 290.0790 | 289.0717 | ||
13 | Quercetin | 10.68 | C15H10O7 | 302.2357 | 301.0354 | 301.0351 | 151.0226, 178.9977, 121.0282, 107.0125 |
14 | Isorhamnetin | 11.79 | C16H12O7 | 316.0582 | 315.0509 | 315.0510 | 300.0277 |
15 | Kaempferol | 11.60 | C15H10O6 | 286.0477 | 285.0404 | 285.0403 | 151.0389, 117.0180 |
16 | Apigenin | 11.83 | C15H10O5 | 270.0528 | 269.0455 | 269.0455 | 117.0333, 151.0027, 107.0126 |
17 | Pinocembrin | 12.54 | C15H12O4 | 256.0735 | 255.0662 | 255.0660 | 213.0551, 151.0026, 107.0125 |
18 | Chrysin | 13.43 | C15H10O4 | 254.0579 | 253.0506 | 253.0506 | 143.0491, 145.0284, 107.0125, 209.0603, 63.0226, 65.0019 |
19 | Galangin | 13.58 | C15H10O5 | 270.0528 | 269.0455 | 269.0454 | 169.0650, 143.0491 |
20 | Pinocembrin | 14.77 | C16H14O4 | 270.0892 | 269.0819 | 269.0822 | 179.0554 |
Stilbens | |||||||
21 | t-Resveratrol | 9.97 | C14H12O3 | 228.0786 | 227.0713 | 227.0708 | 185.0813, 143.0337 |
Phenolic Compounds (mg/L) | White Varieties | Red Varieties | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FR m | FR w | MO m | MO w | RI m | RI w | SB m | SB w | BM m | BM w | CS m | CS w | M m | M w | |
Gallic acid | 0.19 e | 2.24 b | n.d. e | 4.24 a | 0.11 e | 1.66 c | 0.64 d | 0.82 d | 28.84 C | 89.1 A | 0.03 E | 17.70 D | 0.01 F | 30.89 B |
3,4-dihydroxybenzoic acid | 0.07 f | 0.93 a | 0.08 e,f | 0.59 b | 0.13 e | 0.05 f | 0.26 c | 0.19 d | 0.72 D | 15.44 B | n.d. D | 3.94 C | n.d. A | 24.52 A |
4-hydroxibenzoic acid | 0.02 d | 0.07 b | 0.05 c | 0.11 a | 0.03 c,d | 0.07 b,c | 0.09 b | 0.06 c | 0.35 C | 0.78 B | n.d. C,D | 2.35 A | n.d. D | 0.60 B |
Chlorogenic acid | 0.03 a | 0.05 a | n.d. a | n.d. a | 0.03 a | 0.04 a | 0.01 a | 0.01 a | 0.07 D | 0.16 B,C | n.d. D | 0.44 A | n.d. C | 0.20 B |
Syringic acid | 0.01 e | 15.63 c | 0.01 e | 42.51 a | 0.02 e | 17.66 b | n.d. e | 7.03 d | 273.22 C | 590.76 A | 0.27 E | 188.76 D | 0.04 E | 444.40 B |
p-coumaric acid | 0.01 d,e | 1.12 a | n.d. e | 0.13 c,d | 0.03 d,e | 1.33 a | 0.18 c | 0.53 b | 0.78 C,D | 18.27 A | n.d. D | 17.04 B | n.d. D | 2.27 C |
Ferulic acid | 0.02 c | 0.35 a | n.d. c | 0.02 c | 0.03 c | 0.22 b | 0.03 c | 0.26 a | 0.70 C | 9.81 A | n.d. C | 5.46 B | n.d. C | 0.24 C |
Caffeic acid | 0.03 b | n.d. b | n.d. b | n.d. b | 0.07 b | n.d. b | 0.52 a | n.d. b | 1.89 A | n.d. D | 1.07 B | n.d. D | 0.44 C | n.d. D |
Cinnamic acid | 0.32 d | 0.06 e | 3.16 a | 0.01 e | 2.01 b | 0.24 d | 1.93 c | 0.30 d | 1.63 A | 1.29 B | n.d. C | 1.56 A | n.d. C | 1.65 A |
Catechin | 3.64 a | 0.04 g | n.d. g | 3.01 c | 2.69 d | 3.43 b | 2.35 e | 1.75 f | 51.54 A | 23.66 C | 0.05 E | 0.19 D | 0.03 E | 1.03 E |
Epi-catechin | 1.03 c | 0.01 d | n.d. d | 1.23 c | 1.12 c | 2.98 a | 2.28 b | 0.89 c | 44.94 A | 5.11 D | 0.04 B | 0.17 E | 0.02 C | 0.43 E |
Quercetin | 2.00 b | n.d. e | 1.49 c | 0.51 d | 1.52 c | n.d. e | 9.44 a | n.d. e | 239.70 A | 12.30 B | 0.24 C | 0.16 E | 0.01 D | 0.67 E |
Kaempferol | 0.01 a | n.d. a | n.d. a | 0.01 a | n.d. a | n.d. a | n.d. a | n.d. a | 0.05 A | 0.71 A | n.d. A | 0.12 A | n.d. A | 0.09 A |
Isorhamnetin | 0.02 a | n.d. a | n.d. a | 0.03 a | n.d. a | n.d. a | n.d. a | n.d. a | 0.74 A | 0.48 A | n.d. A | 0.03 A | n.d. A | 0.05 A |
Apigenin | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 0.01 A | 0.02 A | n.d. A | 0.06 A | n.d. A | 0.06 A |
Pinocembrin | n.d. a | 0.01 a | n.d. a | 0.01 a | n.d. a | 0.01 a | n.d. a | 0.01 a | n.d. A | 0.07 A | n.d. A | 0.61 A | n.d. A | 0.54 A |
Chrysin | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 0.01 A | 0.05 A | n.d. A | 0.03 A | n.d. A | 0.04 A |
Galangin | 0.01 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 0.01 A | 0.02 A | n.d. A | 0.07 A | n.d. A | 0.10 A |
Resveratrol | 0.44 b,c | 0.02 d | n.d. d | 0.35 c | 0.70 a | 0.06 d | 0.54 a,b | 0.01 d | 5.77 A | 3.13 B | 0.01 C | 1.28 E | n.d. D | 3.00 B,C |
Ellagic acid | 0.06 a | 0.12 a | 0.02 a | 0.09 a | 0.04 a | 0.01 a | 0.03 a | 0.01 a | 0.65 A | 0.49 A | n.d. A | 0.69 A | n.d. A | 0.45 A |
Abscisic acid | 0.05 d,e | 0.14 a,b,c,d | 0.09 c,d | 0.02 e | 0.09 b,c,d | 0.13 a,b,c | 0.15 a,b | 0.14 a | 0.25 A | 0.86 A | n.d. B | 0.73 A | n.d. C | 0.17 C |
∑phenolic compounds | 8.03 | 20.74 | 4.9 | 52.93 | 8.56 | 27.89 | 17.93 | 12.01 | 650.02 | 772.56 | 0.64 | 241.42 | 0.11 | 511.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onache, P.A.; Florea, A.; Geana, E.-I.; Ciucure, C.T.; Ionete, R.E.; Sumedrea, D.I.; Tița, O. Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Appl. Sci. 2023, 13, 5722. https://doi.org/10.3390/app13095722
Onache PA, Florea A, Geana E-I, Ciucure CT, Ionete RE, Sumedrea DI, Tița O. Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Applied Sciences. 2023; 13(9):5722. https://doi.org/10.3390/app13095722
Chicago/Turabian StyleOnache, Petronela Anca, Alina Florea, Elisabeta-Irina Geana, Corina Teodora Ciucure, Roxana Elena Ionete, Dorin Ioan Sumedrea, and Ovidiu Tița. 2023. "Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties" Applied Sciences 13, no. 9: 5722. https://doi.org/10.3390/app13095722
APA StyleOnache, P. A., Florea, A., Geana, E.-I., Ciucure, C. T., Ionete, R. E., Sumedrea, D. I., & Tița, O. (2023). Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Applied Sciences, 13(9), 5722. https://doi.org/10.3390/app13095722