Psychophysical State Aspect during UAV Operations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- RR—average length of RR interval (ms),
- HR—average heart rate (bpm),
- HR max.—maximum value of heart rate (bpm),
- HR min.—minimum value of heart rate (bpm),
- SDNN—standard deviation of NN interval (ms),
- RMSSD—root mean square of successive differences between each RR interval,
- HRVI—histogram density function for the N interval divided by its height. The parameter is usually used for 24 h measurements,
- SD1 parameter—determined on the basis of the Poincarè diagram. This SD parameter is perpendicular to the line of identity. This indicator is characterised by a temporary variability (ms) value. An example of a Poincarè diagram for one of the subjects is shown in Figure 3,
- SD2 parameter—determined on the basis of the Poincarè diagram. This SD parameter is along the line of identity. This indicator characterises long-term heart rate variability and provides information about general variability,
- SD1/SD2—relationship between SD1 and SD2.
- GSI—total figure index,
- g—the number of groups resulting from analysis, sl—group l, with l = 1, 2, …, g,
- S(sl)—partitive total figure index designated for the group
- GSI > 0.70: strong structure of the groups obtained,
- 0.70 ≥ GSI> 0.50: correct grouping structure,
- 0.50 ≥ GSI> 0.25: weak grouping structure,
- GSI ≤ 0.25: no group in a given set.
- Means and standard deviations for each of the significant parameters in a given research group were calculated,
- The values of significant parameters obtained by each subject were analysed in terms of which candidates significantly “deviated” from the calculated averages, taking into account the deviation values. It was important to check the size of the differences (in subjects with “outliers”) compared with the calculated ranges,
- The calculated ranges ( ± SD) were compared with literature sources (based on studies related to the population) specifying what the intervals are for analysed parameters in healthy adults at rest. Thanks to these comparisons, it was possible to control the obtained results in terms of whether they are different from the range of normative values for healthy people. It turned out that the calculated ranges are smaller than or similar to the normative ranges in healthy adults at rest. This can provide information about cognitive load during training. It is assumed, based on other research [22,23,25], that an increase in cognitive load results in a decrease in HRV parameters. This influenced the reckoning that they are appropriate in comparison with the currently prevailing norms (based on studies related to the population) for the analysed parameters,
- The calculated values of averages and deviations were adopted as threshold values for the developed reference systems.
4. Discussion
5. Conclusions
- The parameters of HRV are sensitive to the functioning of the autonomic system, which allows for the analysis of the psychophysical state of the operator;
- In most of the respondents (80%), individual HRV parameters were lower during training tasks than at rest;
- It is possible to determine the values of reference ranges in HRV parameters that occur during the UAVO training—the main task of this article was achieved;
- The performed research confirms the information that appears in the literature: that with a higher cognitive load in task, HRV parameters will decrease. Subjects pointed out in analysis achieved smaller values of parameters than were found in the reference ranges, which means they experienced cognitive overload;
- In the cases of the student operators numbered 14, 18, 17 and 21, the analysis of their psychophysical state, using the parameters of heart rate variability, proved the presence of a significant or small cognitive load.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Civil Aviation Authority. Aviation Personnel Statistics. Available online: https://www.ulc.gov.pl (accessed on 31 June 2021).
- Civil Aviation Authority. National Civil Aviation Safety Plan. 2020. Available online: https://www.ulc.gov.pl/pl/zarzadzanie-bezpieczenstwem/program-bezpieczenstwa-w-lotnictwie-cywilnym/krajowy-plan-bezpieczenstwa/5168-krajowy-plan-bezpieczenstwa-2020-2023 (accessed on 21 August 2020).
- Civil Aviation Authority. National Civil Aviation Safety Plan. 2021. Available online: https://www.ulc.gov.pl/pl/zarzadzanie-bezpieczenstwem/program-bezpieczenstwa-w-lotnictwie-cywilnym/krajowy-plan-bezpieczenstwa/5656-krajowy-plan-bezpieczenstwa-2021-2024 (accessed on 28 June 2021).
- Civil Aviation Authority. National Civil Aviation Safety Plan. 2022. Available online: https://www.ulc.gov.pl/pl/zarzadzanie-bezpieczenstwem/program-bezpieczenstwa-w-lotnictwie-cywilnym/krajowy-plan-bezpieczenstwa/5912-krajowy-plan-bezpieczenstwa-2022-2025 (accessed on 10 June 2022).
- Ćwiklak, J.; Kobiałka, E.; Goś, A. Experimental and Numerical Investigations of Bird Models for Bird Strike Analysis. Energies 2022, 15, 3699. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z. A Safety Monitoring System for Unmanned Aerial Vehicles. In Proceedings of the 2nd International Conference on Computer Science and Application Engineering—CSAE 18, Hohhot, China, 22–24 October 2018. [Google Scholar] [CrossRef]
- Balestrieri, E.; Daponte, P.; De Vito, L.; Picariello, F.; Tudosa, I. Sensors and Measurements for UAV Safety: An Overview. Sensors 2021, 21, 8253. [Google Scholar] [CrossRef] [PubMed]
- Songpo, L.; Mary, L. Cummings, Benjamin Welton, Assessing the impact of autonomy and overconfidence in UAV first-person view training. Appl. Ergon. 2022, 98, 103580. [Google Scholar] [CrossRef]
- Carver, J.C.; Penzenstadler, B.; Serebrenik, A.; Yamashita, A. The Human Factor. IEEE Softw. 2017, 34, 90–92. [Google Scholar] [CrossRef]
- Kovacs, G.; Hőgye-Nagy, A.; Kurucz, G. Human Factor Aspects of Situation Awareness in Autonomous Cars—An Overview of Psychological Approaches. Acta Polytech. Hung. 2021, 18, 7–14. [Google Scholar] [CrossRef]
- Galant-Gołębiewska, M.; Mika, B.; Maciejewska, M. Analysis of the impact of task difficulty on the operator’s workload level. Aviation 2022, 26, 72–78. [Google Scholar] [CrossRef]
- Li, K.W.; Lu, Y.; Li, N. Subjective and objective assessments of mental workload for UAV operations. Work 2022, 72, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Hertzum, M.; Due Holmegaard, K. Perceived Time as a Measure of Mental Workload: Effects of Time Constraints and Task Success. Int. J. Hum. Comput. Interact. 2013, 29, 26–39. [Google Scholar] [CrossRef]
- Galant, M.; Merkisz, J. Analysis of the possibilities of using EEG in assessing pilots’ psychophysical condition. Sci. J. Silesian Univ. Technol. Ser. Transp. 2017, 95, 39–46. [Google Scholar] [CrossRef]
- Galant, M.; Nowak, M.; Maciejewska, M.; Łęgowik, A.; Kardach, M. Using the simulation technique to improve efficiency in general aviation. AIP Conf. Proc. 2019, 2078, 020097. [Google Scholar] [CrossRef]
- Maciejewska, M.; Galant-Gołębiewska, M. Case study of pilot’s Heart Rate Variability (HRV) during flight operation. Transp. Res. Procedia 2021, 59, 244–252. [Google Scholar] [CrossRef]
- Singh, G.; Chanel, C.P.; Roy, R.N. Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming plications. Front. Hum. Neurosci. 2021, 15, 692878. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.; Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 2018, 74, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Morelli, M.; Casagrande, M. Heart Rate Variability and Decision-Making: Autonomic Responses in Making Decisions. Brain Sci. 2021, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk-Majka, L. Application of Cluster Analysis to Variables Expressed on an Ordinal Scale, StatSoft Poland. 2018. Available online: https://www.statsoft.pl (accessed on 5 November 2021).
- Chand, T.; Li, M.; Jamalabadi, H.; Wagner, G.; Lord, A.; Alizadeh, S.; Danyeli, L.V.; Herrmann, L.; Walter, M.; Sen, Z.D. Heart Rate Variability as an Index of Differential Brain Dynamics at Rest and After Acute Stress Induction. Front. Neurosci. 2020, 14, 645. [Google Scholar] [CrossRef] [PubMed]
- Matos, F.; Vido, A.; Garcia, W.F.; Lopes, W.A.; Pereira, A. A Neurovisceral Integrative Study on Cognition, Heart Rate Variability, and Fitness in the Elderly. Front. Aging Neurosci. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Babusiak, B.; Borikn, S.; Gala, M. Prerequisite for HRV biofeedback: Real-Time Detection of R peaks. In Proceedings of the 19th International Conference Computational Problems of Electrical Engineering, New York, NY, USA, 9–12 September 2018. [Google Scholar] [CrossRef]
- Siennicka, A.; Quintana, D.S.; Fedurek, P.; Wijata, A.; Paleczny, B.; Ponikowska, B.; Danel, D.P. Resting heart rate variability, attention and attention maintenance in young adults. Int. J. Psychophysiol. 2019, 143, 126–131. [Google Scholar] [CrossRef]
- Mather, M.; Thayer, J.F. How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 2018, 19, 98–104. [Google Scholar] [CrossRef]
- Luo, H.; Wei, J.; Yasin, Y.; Wu, S.J.; Barszczyk, A.; Feng, Z.P.; Lee, K. Stress Determined through Heart Rate Variability Predicts Immune Function. Neuroimmunomodulation 2019, 26, 167–173. [Google Scholar] [CrossRef]
- Malik, M.; Huikuri, H.; Lombardi, F.; Schmidt, G. The purpose of heart rate variability measurements. Clin. Auton. Res. 2017, 27, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gu, R.; Yang, O.; Luo, Y. How Do Amusement, Anger and Fear Influence Heart Rate and Heart Rate Variability? Front. Neurosci. 2019, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Alba, G.; Vila, J.; Rey, B.; Montoya, P.; Muñoz, M.Á. The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility. Front. Hum. Neurosci. 2019, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Xiu, L.C.; Zhou, R.L.; Jiang, Y.H. Working memory training improves emotion regulation ability: Evidence from HRV. Physiol. Behav. 2016, 155, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Klaproth, O.W.; Halbrügge, M.; Krol, L.R.; Vernaleken, C.; Zander, T.O.; Russwinkel, N. A Neuroadaptive Cognitive Model for Dealing With Uncertainty in Tracing Pilots’ Cognitive State. Top. Cogn. Sci. 2020, 12, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the Rules and Procedures for the Operation of Unmanned Aerial Vehicles. Available online: https://www.ulc.gov.pl/pl/drony/akty-prawne (accessed on 17 February 2020).
- Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-Moro, I.; Granero-Gallegos, A. HRV-Guided Training for Professional Endurance Athletes: A Protocol for a Cluster-Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [Google Scholar] [CrossRef] [PubMed]
- González-Fimbres, R.A.; Ramírez-Siqueiros, M.G.; Vaca-Rubio, H.; Moueth-Cabrera, M.T.; Hernández-Cruz, G. Relationship Between Post-Exercise HRV and Internal Training Load in Triathletes. Rev. Int. Med. Y Cienc. Act. Física Y Deporte 2020, 20, 87–102. [Google Scholar] [CrossRef]
- Mansikka, H.; Simola, P.; Virtanen, K.; Harris, D.; Oksama, L. Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 2016, 59, 1344–1352. [Google Scholar] [CrossRef]
- Mansikka, H.; Virtanen, K.; Harris, D.; Simola, P. Fighter pilots’ heart rate, heart rate variation and performance during an instrument flight rules proficiency test. Appl. Ergon. 2016, 56, 213–219. [Google Scholar] [CrossRef]
- Mansikka, H.; Harris, D.; Virtanen, K. Pilot competencies as components of a dynamic human-machine system. Hum. Factors Ergon. Manuf. Serv. Ind. 2019, 29, 466–477. [Google Scholar] [CrossRef]
- Alaimo, A.; Esposito, A.; Orlando, C.; Simoncini, A. Aircraft Pilot Workload Analysis: Heart Rate Variability Objective Measures and NASA-Task Load Index Subjective Evaluation. Aerospace 2020, 7, 137. [Google Scholar] [CrossRef]
- Maciejewska, M. Increasing the Effectiveness of Training in General Aviation Using a Proprietary Method Assessment of the Psychophysical State of the Candidate. PhD Dissertation, Poznan University of Technology, Poznań, Poland, 2023. [Google Scholar]
Variable | Shapiro-Wilk’s Test | p-Value | Relevance | t-Student Test | Wilcoxon’s Test | p-Value | Relevance |
---|---|---|---|---|---|---|---|
RR | 0.91301 | 0.06298 | p > 0.05 | 0.40145 | – | 0.69234 | p > 0.05 |
RR * | 0.96103 | 0.53731 | p > 0.05 | ||||
HR | 0.95959 | 0.50792 | p > 0.05 | 1.66 | – | 0.11209 | p > 0.05 |
HR * | 0.95766 | 0.47021 | p > 0.05 | ||||
SDNN | 0.97111 | 0.75752 | p > 0.05 | 2.81499 | – | 0.01070 | p < 0.05 |
SDNN * | 0.95476 | 0.41748 | p > 0.05 | ||||
RMSSD | 0.72027 | 0.00005 | p < 0.05 | – | 1.33817 | 0.18084 | p > 0.05 |
RMSSD * | 0.90712 | 0.04818 | p < 0.05 | ||||
HR max. | 0.95688 | 0.45555 | p > 0.05 | 3.08196 | – | 0.00588 | p < 0.05 |
HR max. * | 0.96687 | 0.66323 | p > 0.05 | ||||
HR min. | 0.92975 | 0.13609 | p > 0.05 | 8.30978 | – | 0.00045 | p < 0.05 |
HR min. * | 0.94175 | 0.23591 | p > 0.05 | ||||
HRVI | 0.90828 | 0.05079 | p > 0.05 | 1.78349 | – | 0.08969 | p > 0.05 |
HRVI * | 0.95707 | 0.45926 | p > 0.05 | ||||
SD1 | 0.72176 | 0.00005 | p < 0.05 | – | 1.40769 | 0.04923 | p < 0.05 |
SD1 * | 0.90643 | 0.04671 | p < 0.05 | ||||
SD2 | 0.95271 | 0.38289 | p > 0.05 | 6.23257 | – | 0.00194 | p < 0.05 |
SD2 * | 0.94891 | 0.32474 | p > 0.05 | ||||
SD1/SD2 | 0.51888 | 0.00000 | p < 0.05 | – | 0.53874 | 0.59006 | p > 0.05 |
SD1/SD2 * | 0.61448 | 0.00000 | p < 0.05 |
Group | Operator | SDNN | HR Max. | HR Min. | SD2 | SD1 | SD1/SD2 |
---|---|---|---|---|---|---|---|
S1 | 6 | 29.371 | 147.42 | 67.345 | 40.082 | 10.911 | 0.272217 |
S2 | 14 | 48.059 | 104.6 | 60.546 | 65.414 | 18.428 | 0.281713 |
16 | 55.334 | 111.61 | 64.879 | 75.487 | 20.633 | 0.273332 | |
18 | 56.767 | 104.09 | 64.483 | 75.81 | 26.252 | 0.346287 | |
S3 | 1 | 34.9 | 101.84 | 64.949 | 47.687 | 12.835 | 0.269151 |
5 | 31.562 | 123.56 | 61.158 | 43.761 | 8.845 | 0.202121 | |
9 | 38.394 | 110.74 | 63.83 | 51.012 | 18.639 | 0.365385 | |
S4 | 3 | 26.392 | 124.48 | 80.994 | 35.558 | 11.248 | 0.316328 |
4 | 24.385 | 122 | 85.33 | 48.56 | 8.353 | 0.172014 | |
7 | 28.666 | 134.53 | 82.192 | 39.789 | 7.8065 | 0.196197 | |
17 | 19.922 | 122.7 | 84.246 | 27.458 | 6.3306 | 0.230556 | |
21 | 21.04 | 114.72 | 83.025 | 28.85 | 7.2397 | 0.250943 | |
S5 | 2 | 48 | 131.23 | 83.07 | 47.697 | 48.204 | 1.01063 |
8 | 32.675 | 124.9 | 73.638 | 44.522 | 12.35 | 0.277391 | |
10 | 37.264 | 123.86 | 72.191 | 51.415 | 11.569 | 0.225012 | |
11 | 34.327 | 117.1 | 76.2 | 47.145 | 11.569 | 0.245392 | |
12 | 36.634 | 127.01 | 78.016 | 50.075 | 13.285 | 0.265302 | |
13 | 35.357 | 113.12 | 70.738 | 48.717 | 11.242 | 0.230761 | |
15 | 43.162 | 125.79 | 71.548 | 59.862 | 11.966 | 0.199893 | |
19 | 45.754 | 121.16 | 67.838 | 60.54 | 22.88 | 0.377932 | |
20 | 39.52 | 121.36 | 78.222 | 54.5 | 12.421 | 0.227908 |
HRV Parameters | ||
---|---|---|
SDNN | 50 (16) | 36.5 (10) |
SD1 | 66.36 (16) | 15 (9) |
SD2 | 93.24 (19) | 50 (13) |
SD1/SD2 | 0.726 (0.06) | 0.29 (0.16) |
HR max. | - | 120 (11) |
HR min. | - | 73 (8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewska, M.; Galant-Gołębiewska, M.; Łodygowski, T. Psychophysical State Aspect during UAV Operations. Appl. Sci. 2024, 14, 150. https://doi.org/10.3390/app14010150
Maciejewska M, Galant-Gołębiewska M, Łodygowski T. Psychophysical State Aspect during UAV Operations. Applied Sciences. 2024; 14(1):150. https://doi.org/10.3390/app14010150
Chicago/Turabian StyleMaciejewska, Marta, Marta Galant-Gołębiewska, and Tomasz Łodygowski. 2024. "Psychophysical State Aspect during UAV Operations" Applied Sciences 14, no. 1: 150. https://doi.org/10.3390/app14010150
APA StyleMaciejewska, M., Galant-Gołębiewska, M., & Łodygowski, T. (2024). Psychophysical State Aspect during UAV Operations. Applied Sciences, 14(1), 150. https://doi.org/10.3390/app14010150