Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems
Abstract
:1. Introduction
- Firstly, we introduce HAPR into a wireless communication system to assist the transmission. In this model, we identify the value of the amplification factor that maximizes the SNR of the receiver.
- Secondly, we study the OP of HAPR and obtain the close-form approximation expression by utilizing the compound Simpson formula. In addition, the expressions of active RIS and passive RIS are calculated and compared with the above expressions.
- Finally, we verify the correctness of our derived formulations by Monte Carlo simulation and further analyze the simulation results. Numerical results reveal that our proposed HAPR system outperforms the conventional passive and active RIS systems mentioned above and requires fewer REs to achieve the target OP than the two conventional schemes.
2. System Model
2.1. Active Mode
2.2. Passive Mode
3. Performance Analysis
3.1. OP of the Full Active RIS System
3.2. OP of the Full Passive RIS System
3.3. OP of the Hybrid Active–Passive RIS System
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RIS | Reconfigurable Intelligent Surface |
HAPR | Hybrid Active–Passive Reconfigurable Intelligent Surface |
RE | Reflecting elements Surface |
OP | Qutage probability |
CSI | Channel state information |
CDF | Cumulative distribution functions |
SNR | Signal-to-noise ratio |
Appendix A. The CDF Derivation of SNR for HAPR Systems
References
- Córdoba, J.O.; Zarca, A.M.; Skármeta, A. Unmanned Aerial Vehicle Multi-Access Edge Computing as Security Enabler for Next-Gen 5G Security Frameworks. Intell. Autom. Soft Comput. 2023, 37, 2307–2333. [Google Scholar]
- Zhao, J.; Li, S.; Xu, X.; Yan, H.; Zhang, Z. Adaptive resource allocation of secured access to intelligent surface enhanced satellite–terrestrial networks with two directional traffics. AEU-Int. J. Electron. Commun. 2023, 170, 154746. [Google Scholar] [CrossRef]
- Boulogeorgos, A.-A.A.; AAlexiou, A. Ergodic Capacity Analysis of Reconfigurable Intelligent Surface Assisted Wireless Systems. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 395–400. [Google Scholar]
- Yang, L.; Meng, F.X.; Wu, Q.Q.; da Costa, D.B.; Alouini, M.-S. Accurate Closed-Form Approximations to Channel Distributions of RIS-Aided Wireless Systems. IEEE Wirel. Commun. Lett. 2020, 9, 1985–1989. [Google Scholar] [CrossRef]
- Yang, L.; Meng, F.X.; Zhang, J.Y.; Hasna, M.O.; Renzo, M.D. On the Performance of RIS-Assisted Dual-Hop UAV Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 10385–10390. [Google Scholar] [CrossRef]
- P. de Figueiredo, F.A. Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond. Appl. Sci. 2023, 13, 11750. [Google Scholar] [CrossRef]
- Zhi, K.D.; Pan, C.H.; Ren, H.; Chai, K.K.; Elkashlan, M. Active RIS Versus Passive RIS: Which is Superior With the Same Power Budget? IEEE Commun. Lett. 2008, 10, 142–149. [Google Scholar] [CrossRef]
- Nor, A.M.; Fratu, O.; Halunga, S. Fingerprint Based Codebook for RIS Passive Beamforming Training. Appl. Sci. 2023, 13, 6809. [Google Scholar] [CrossRef]
- Luo, J.; Dai, H.; Wang, B.; Li, C. Design of Beamforming Algorithm for Ultra-reliable and Low-latency Communication in Heterogeneous Networks Based on IRS Assistance. J. Electron. Inf. Technol. 2023, 7, 2289–2298. [Google Scholar]
- Tao, Q.; Wang, J.W.; Zhong, C.J. Performance Analysis of Intelligent Reflecting Surface Aided Communication Systems. IEEE Commun. Lett. 2020, 24, 2464–2468. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Zhang, Q.; Wang, J.; Sun, X.H. Secrecy rate analysis for reconfigurable intelligent surface-assisted MIMO communications with statistical CSI. China Commun. 2021, 18, 52–62. [Google Scholar] [CrossRef]
- He, Z.-Q.; Yuan, X.J. Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO. IEEE Wirel. Commun. Lett. 2020, 9, 210–214. [Google Scholar] [CrossRef]
- Hou, T.W.; Liu, Y.W.; Song, Z.Y.; Sun, X.; Chen, Y.; Hanzo, L. Reconfigurable Intelligent Surface Aided NOMA Networks. IEEE J. Sel. Areas. Commum. 2020, 38, 2575–2588. [Google Scholar] [CrossRef]
- Yang, L.; Guo, W.; Ansari, I.S. Mixed Dual-Hop FSO-RF Communication Systems Through Reconfigurable Intelligent Surface. IEEE Commun. Lett. 2020, 24, 1558–1562. [Google Scholar] [CrossRef]
- Yang, L.; Yan, X.Q.; da Costa, D.B.; Tsiftsis, T.A.; Yang, H.-C.; Alouini, M.-S. Indoor Mixed Dual-Hop VLC/RF Systems Through Reconfigurable Intelligent Surfaces. IEEE Wirel. Commun. Lett. 2020, 9, 1995–1999. [Google Scholar] [CrossRef]
- Do, T.N.; Kaddoum, G.; Nguyen, T.L.; da Costa, D.B.; Haas, Z.J. Aerial Reconfigurable Intelligent Surface-Aided Wireless Communication Systems. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 5–8 September 2021; 32nd ed.. IEEE: Helsinki, Finland, 2021; pp. 525–530. [Google Scholar]
- Atapattu, S.; Fan, R.F.; Dharmawansa, P.; Wang, G.P.; Evans, J.; Tsiftsis, T.A. Reconfigurable Intelligent Surface Assisted Two-Way Communications: Performance Analysis and Optimization. IEEE Trans. Commun. 2020, 68, 6552–6567. [Google Scholar] [CrossRef]
- Long, R.Z.; Liang, Y.-C.; Pei, Y.Y.; Larsson, E.G. Active Reconfigurable Intelligent Surface-Aided Wireless Communications. IEEE Trans. Wirel. Commun. 2021, 20, 4962–4975. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Dai, L.L.; Chen, X.B.; Liu, C.H.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Huang, C.W.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- You, C.S.; Zhang, R. Wireless Communication Aided by Intelligent Reflecting Surface: Active or Passive? IEEE Trans. Wirel. Commun. 2021, 10, 2659–2663. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Ngatched, T.M.N.; Ahmed, M.H.; Ndjiongue, A.R. Active Reconfigurable Intelligent Surfaces-Aided Wireless Communication System. IEEE Commun. Lett. 2021, 25, 3699–3703. [Google Scholar] [CrossRef]
- Liu, K.Z.; Zhang, Z.J.; Dai, L.L.; Xu, S.H.; Yang, F. Active Reconfigurable Intelligent Surface: Fully-Connected or Sub-Connected? IEEE Commun. Lett. 2022, 26, 167–171. [Google Scholar] [CrossRef]
- Wang, W.; Ji, B.; Song, K. RIS-Assisted Cooperative Transmission System with Adaptive Reflection Scheme. In Proceedings of the 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; IEEE: Nanjing, China, 2023; pp. 1129–1134. [Google Scholar]
- Alexandropoulos, G.C.; Vlachos, E. A Hardware Architecture for Reconfigurable Intelligent Surfaces with Minimal Active Elements for Explicit Channel Estimation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Barcelona, Spain, 2020; pp. 9175–9179. [Google Scholar]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling Large Intelligent Surfaces With Compressive Sensing and Deep Learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Burlington, MA, USA, 2007; Volume 20, pp. 1157–1160. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards Applied Mathematics Series 55. Tenth Printing; Government Printing Office: Washington, DC, USA, 1972; p. 1076.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Song, K. Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems. Appl. Sci. 2024, 14, 231. https://doi.org/10.3390/app14010231
Wang W, Song K. Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems. Applied Sciences. 2024; 14(1):231. https://doi.org/10.3390/app14010231
Chicago/Turabian StyleWang, Wenhe, and Kang Song. 2024. "Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems" Applied Sciences 14, no. 1: 231. https://doi.org/10.3390/app14010231
APA StyleWang, W., & Song, K. (2024). Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems. Applied Sciences, 14(1), 231. https://doi.org/10.3390/app14010231