A Comparative Study of Real and Virtual Environment via Psychological and Physiological Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Environmental Simulation Set-Ups
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Phase 1: Analysis of Level of Sense of Presence
3.2. Phase 2: Analysis of the Similarity between the Physical Experiment and the IVE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, J.W. Immersive Virtual Environment Technology to Supplement Environmental Perception, Preference and Behavior Research: A Review with Applications. Int. J. Environ. Res. Public Health. 2015, 12, 11486–11505. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D. Virtual Reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Yeom, D.; Choi, J.H.; Kang, S.H. Investigation of the physiological differences in the immersive virtual reality environment and real indoor environment: Focused on skin temperature and thermal sensation. Build. Environ. 2019, 154, 44–54. [Google Scholar] [CrossRef]
- Rose, D.; Foreman, N. Virtual Reality. Psychologist 1999, 12, 550–554. [Google Scholar] [CrossRef]
- Moscoso, C.; Matusiak, B.; Svensson, U.P.; Orleanski, K. Analysis of stereoscopic images as a new method for daylighting studies. ACM Trans. Appl. Percept. 2015, 11, 21. [Google Scholar] [CrossRef]
- Alamirah, H.; Schweiker, M.; Azar, E. Immersive virtual environments for occupant comfort and adaptive behavior research–A comprehensive review of tools and applications. Build Environ. 2022, 207, 108396. [Google Scholar] [CrossRef]
- Gloy, K.; Weyhe, P.; Nerenz, E.; Kaluschke, M.; Uslar, V.; Zachmann, G.; Weyhe, D. Immersive anatomy atlas: Learning factual medical knowledge in a virtual reality environment. Anat. Sci. Educ. 2022, 15, 360–368. [Google Scholar] [CrossRef]
- Ye, J.; Badiyani, S.; Raja, V.; Schlegel, T. Applications of virtual reality in product design evaluation. In Human-Computer Interaction. HCI Applications and Services: 12th International Conference, HCI International 2007, Beijing, China, 22–27 July 2007, Proceedings, Part IV 12; Jacko, J.A., Ed.; Springer: Berlin, Germany, 2007; pp. 1190–1199. [Google Scholar]
- Tea, S.; Panuwatwanich, K.; Ruthankoon, R.; Kaewmoracharoen, M. Multiuser immersive virtual reality application for real-time remote collaboration to enhance design review process in the social distancing era. J. Eng. Des. Technol. 2022, 20, 281–298. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Prabhakaran, A.; Mahamadu, A.M.; Mahdjoubi, L. Understanding the challenges of immersive technology use in the architecture and construction industry: A systematic review. Autom. Constr. 2022, 137, 104228. [Google Scholar] [CrossRef]
- Azarby, S.; Rice, A. Understanding the effects of virtual reality system usage on spatial perception: The Potential impacts of immersive virtual reality on spatial design decisions. Sustainability 2022, 14, 10326. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Choi, H.H.; Van Merriënboer, J.J.; Paas, F. Effects of the physical environment on cognitive load and learning: Towards a new model of cognitive load. Educ. Psychol. Rev. 2014, 26, 225–244. [Google Scholar] [CrossRef]
- Marchand, G.C.; Nardi, N.M.; Reynolds, D.; Pamoukov, S. The impact of the classroom built environment on student perceptions and learning. J. Environ. Psychol. 2014, 40, 187–197. [Google Scholar] [CrossRef]
- Suleman, Q.; Hussain, I. Effects of classroom physical environment on the academic achievement scores of secondary school students in Kohat Division, Pakistan. Int. J. Learn. Dev. 2014, 4, 71–82. [Google Scholar] [CrossRef]
- Cho, B.H.; Ku, J.; Jang, D.P.; Kim, S.; Lee, Y.H.; Kim, I.Y.; Lee, J.H.; Kim, S.I. The effect of virtual reality cognitive training for attention enhancement. CyberPsychology Behav. 2002, 5, 129–137. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Schultheis, M.; Kerns, K.A.; Mateer, C. Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 2004, 14, 207–239. [Google Scholar] [CrossRef]
- Adams, R.; Finn, P.; Moes, E.; Flannery, K.; Rizzo, A.S. Distractibility in attention/deficit/hyperactivity disorder (ADHD): The virtual reality classroom. Child Neuropsychol. 2009, 15, 120–135. [Google Scholar] [CrossRef]
- Parsons, T.D.; Bowerly, T.; Buckwalter, J.G.; Rizzo, A.A. A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychol. 2007, 13, 363–381. [Google Scholar] [CrossRef]
- Parsons, T.D.; Rizzo, A.A.; Rogers, S.; York, P. Virtual reality in paediatric rehabilitation: A review. Dev. Neurorehabil. 2009, 12, 224–238. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Buckwalter, J.G.; Bowerly, T.; Van Der Zaag, C.; Humphrey, L.; Neumann, U.; Sisemore, D. The virtual classroom: A virtual reality environment for the assessment and rehabilitation of attention deficits. CyberPsychology Behav. 2000, 3, 483–499. [Google Scholar] [CrossRef]
- Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The impact of classroom design on pupils’ learning: Final results of a holistic, multi-level analysis. Build. Environ. 2015, 89, 118–133. [Google Scholar] [CrossRef]
- Yang, Z.; Becerik-Gerber, B.; Mino, L. A study on student perceptions of higher education classrooms: Impact of classroom attributes on student satisfaction and performance. Build. Environ. 2013, 70, 171–188. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Gonzalez-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Ghassemi, F.; Moradi, M.H.; Doust, M.T.; Abootalebi, V. Classification of sustained attention level based on morphological features of EEG’s independent components. In Proceedings of the 2009 ICME International Conference on Complex Medical Engineering, Tempe, AZ, USA, 9–11 April 2009; pp. 1–6. [Google Scholar]
- Liu, Y.; Sourina, O.; Nguyen, M.K. Real-time EEG-based emotion recognition and its applications. In Transactions on Computational Science XII: Special Issue on Cyberworlds; Gavrilova, M.L., Kenneth Tan, C.J., Sourin, A., Sourina, O., Eds.; Springer: Heidelberg, Germany, 2011; pp. 256–277. [Google Scholar]
- Artífice, A.; Ferreira, F.; Marcelino-Jesus, E.; Sarraipa, J.; Jardim-Gonçalves, R. Student’s attention improvement supported by physiological measurements analysis. In Proceedings of the 8th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2017, Costa de Caparica, Portugal, 3–5 May 2017; Camarinha-Matos, L., Parreira-Rocha, M., Ramezani, J., Eds.; Springer: Costa de Caparica, Portugal, 2017; pp. 93–102. [Google Scholar]
- Sakai, T.; Tamaki, H.; Ota, Y.; Egusa, R.; Inagaki, S.; Kusunoki, F.; Mizoguchi, H. EDA-based estimation of visual attention by observation of eye blink frequency. Int. J. Smart Sens. Intell. Syst. 2017, 10, 296–307. [Google Scholar] [CrossRef]
- Kuliga, S.; Thrash, T.; Dalton, R.; Hölscher, C. Virtual reality as an empirical research tool—Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 2015, 54, 363–375. [Google Scholar] [CrossRef]
- Chamilothori, K.; Chinazzo, G.; Rodrigues, J.; Dan-Glauser, E.; Wienold, J.; Andersen, M. Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Build. Environ. 2019, 150, 144–155. [Google Scholar] [CrossRef]
- Heydarian, A.; Carneiro, J.P.; Gerber, D.; Becerik-Gerber, B.; Hayes, T.; Wood, W. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- Loyola, M. The influence of the availability of visual cues on the accurate perception of spatial dimensions in architectural virtual environments. Virtual Real. 2018, 22, 235–243. [Google Scholar] [CrossRef]
- Emamjomeh, A.; Zhu, Y.; Beck, M. The potential of applying immersive virtual environment to biophilic building design: A pilot study. J. Build. Eng. 2020, 32, 101481. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Gentili, C.; Pasquale, E.; Alcañiz, M.; Valenza, G. Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum. PLoS ONE 2019, 14, e0223881. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Trujillo, J.L.; López-Tarruella, J.; Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Kooi, F.L.; Toet, A. Visual comfort of binocular and 3D displays. Displays 2004, 25, 99–108. [Google Scholar] [CrossRef]
- Lombard, M.; Ditton, T. At the heart of it all: The concept of presence. J. Comput. Commun. 1997, 3, JCMC321. [Google Scholar] [CrossRef]
- Seidman, L.J.; Breiter, H.C.; Goodman, J.M.; Goldstein, J.M.; Woodruff, P.W.; O’Craven, K.; Rosen, B.R.; Tsuang, M.T.; Rosen, B.R. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demand. Neuropsychology 1998, 12, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.S.; Díez, E. False recognition production indexes in Spanish for 60 DRM lists with three critical words. Behav. Res. Methods. 2011, 43, 499–507. [Google Scholar] [CrossRef]
- Alonso, M.Á.; Fernández, Á.; Díez, E.; Beato, M.S. Índices de producción de falso recuerdo y falso reconocimiento para 55 listas de palabras en castellano. Psicothema 2004, 16, 357–362. [Google Scholar]
- Steuer, J. Defining Virtual Reality: Dimensions determining telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in virtual environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Knyazev, G.G.; Savostyanov, A.N.; Levin, E.A. Alpha oscillations as a correlate of trait anxiety. Int. J. Psychophysiol. 2004, 53, 147–160. [Google Scholar] [CrossRef]
- Fuchs, T.; Birbaumer, N.; Lutzenberger, W.; Gruzelier, J.H.; Kaiser, J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Appl. Psychophysiol. Biofeedback 2003, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Gruzelier, J.H. Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 2011, 12, 4155–4159. [Google Scholar] [CrossRef] [PubMed]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin. Neurosci. 2016, 7, 143–158. [Google Scholar] [PubMed]
- Demos, J.N. Getting Started with Neurofeedbac; W.W. Norton & Company, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M. Principles of Clinical Electrocardiography; LANGE: Los Altos, CA, USA, 1976. [Google Scholar]
- Berntson, G.G.; Bigger, J.T.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, E.; Ortega, A.R.; Reyes Del Paso, G. Anxiety, attention, and decision making: The moderating role of heart rate variability. Int. J. Psychophysiol. 2015, 98, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer Science & Business Media: Newsbury Park, CA, USA; London, UK; New Dehli, India, 2012. [Google Scholar]
- Braithwaite, J.J.; Watson, D.G.; Jones, R.; Rowe, M. A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 2013, 49, 1017–1034. [Google Scholar]
- Raskin, D.C. Attention and arousal. In Electrodermal Activity in Psychological Research; Prokasy, W.F., Raskin, D.C., Eds.; Academic Press: London, UK, 1973; pp. 123–156. [Google Scholar]
- Slater, M.; Steed, A. A Virtual Presence Counter. Presence Teleoperators Virtual Environ. 2000, 9, 413–434. [Google Scholar] [CrossRef]
- Hygge, S.; Knez, I. Effects of noise, heat and indoor lighting on cognitive performance and self-reported affect. J. Environ. Psychol. 2001, 21, 291–299. [Google Scholar] [CrossRef]
- Izard, C.E. Basic emotions, relations among emotions, and emotion-cognition relations. Psychol. Rev. 1992, 99, 561–565. [Google Scholar] [CrossRef]
- Baceviciute, S.; Terkildsen, T.; Makransky, G. Remediating Learning from Non-immersive to Immersive Media: Using EEG to Investigate the Effects of Environmental Embeddedness on Reading in Virtual Reality. Comput. Educ. 2021, 164, 104122. [Google Scholar] [CrossRef]
- Hildebrandt, L.K.; Mccall, C.; Engen, H.G.; Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 2016, 53, 880890. [Google Scholar] [CrossRef] [PubMed]
- Amaral, C.P.; Simões, M.A.; Mouga, S.; Andrade, J.; Castelo-Branco, M. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study. J. Neurosci. Methods 2017, 290, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 13657. [Google Scholar] [CrossRef]
- Riva, G.; Davide, F.; IJsselsteijn, W.A. Being There: Concepts, Effects and Measurements of User Presence in Synthetic Environments; Ios Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Gorini, A.; Capideville, C.S.; De Leo, G.; Mantovani, F.; Riva, G. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 99–105. [Google Scholar] [CrossRef]
- Chirico, A.; Cipresso, P.; Yaden, D.B.; Biassoni, F.; Riva, G.; Gaggioli, A. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study. Sci. Rep. 2017, 7, 1218. [Google Scholar] [CrossRef]
- Blascovich, J.; Loomis, J.; Beall, A.C.; Swinth, K.R.; Hoyt, C.L.; Bailenson, N.; Bailenson, J.N. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 2012, 13, 103–124. [Google Scholar] [CrossRef]
CONCEPT | TIME (MINUTES) | |
---|---|---|
Preparation | PARTICIPANT INITIATION Reception, basic instructions, signing of consent form, and fitting of physiological recording devices. | ≈10 |
TEST SCENARIO Viewing a test scenario, to adjust the environmental simulation device and acclimatise the participant. | ≈2 | |
Pre-experiment | BASELINE Eyes open and eyes closed. | 3 (1.5 + 1.5) |
GENERAL INSTRUCTIONS “You will first hear some audio material. Then you will see yourself in a space. Imagine that it is a university classroom in which you are taking a class. Look at it for 90 s. Thereafter, you will complete a series of tasks and a demographic questionnaire.”. | ≈1 | |
Classroom Experiment | PREPARATION AUDIO Relaxing audio to reduce fatigue before repetition of the sequence. | 1 |
CLASSROOM EXPERIMENT Physical classroom and its replica. Metrics: physiological recordings (EEG-C3-Beta, EEG-F3-Highbeta, HRV-HF, and EDA-Phasic). | 1 | |
PSYCHOLOGICAL ATTENTION TASK “You will now hear a series of sounds. You must react as soon as possible to a specific stimulus with a single mouse click and avoid doing so with others. The stimulus you should react to is this [sound 1] and the stimuli that you should ignore are [sound 2, sound 3, sound 4, sound 5]”. Metrics: psychological task (Task-Time, Task-Errors). | 4 | |
PSYCHOLOGICAL MEMORY TASK “You will hear a series of words. Try to remember them. You will be asked to repeat the words, in any order, within 30 s. You should do this 3 times”. Metrics: psychological task (Memory-Correct answers). | 4 | |
EVALUATION OF THE VIRTUAL CLASSROOM EXPERIMENT Metrics: psychological questionnaire (SUS-Total) | ≈1 | |
Post- experiment | DEMOGRAPHIC QUESTIONNAIRE Demographic questionnaire | ≈1 |
PARTICIPANT EXIT PROTOCOL Retrieval of the devices, accompany participant to the exit | ≈5 | |
TOTAL (Physical classroom/IVE replica) | ≈33 |
ANALYSIS AND DATA USED | STATISTICAL TREATMENT | EXPECTED RESULT |
---|---|---|
Phase 1. Analysis of level of sense of presence. SUS-Total. | Descriptive analysis of means. | Sufficient level of presence. |
Phase 2. Analysis of the similarity of the physical experiments and the IVEs, based on attention and memory performance and physiological responses.
| ANOVA or Mann–Whitney test, depending on data distribution. | Significant differences depending on the experimental condition (Physical vs. IVE). |
Item | Mean (Standard Deviation) |
---|---|
| 5.33 (1.365) |
| 5.00 (1.168) |
| 5.20 (1.618) |
| 4.73 (1.543) |
| 4.07 (1.789) |
| 5.27 (1.711) |
ATTENTION PERFORMANCE | |||||
Mean | F | p | η2p | ||
Task-Time | Physical IVE | 437.72 448.51 | 0.825 | 0.367 | 0.009 |
Mean Rank | U | p | η2p | ||
Task-Errors | Physical IVE | 36.00 36.77 | 575 | 0.878 | 0.004 |
MEMORY PERFORMANCE | |||||
Mean Rank | U | p | η2p | ||
Task-Memory-answers | Physical IVE | 29.86 26.60 | 279 | 0.514 | 0.009 |
NEUROPHYSIOLOGICAL RESPONSES | |||||
---|---|---|---|---|---|
Mean Rank | U | p | η2p | ||
EEG-C3-Beta | Physical IVE | 33.00 28.59 | 377 | 0.332 | 0.009 |
EEG-F3-Highbeta | Physical IVE | 25.50 31.10 | 312 | 0.200 | 0.012 |
HRV-HF | Physical IVE | 24.22 29.13 | 281 | 0.250 | 0.020 |
EDA-Phasic | Physical IVE | 18.93 19.04 | 160 | 0.975 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llinares, C.; Higuera-Trujillo, J.L.; Montañana, A. A Comparative Study of Real and Virtual Environment via Psychological and Physiological Responses. Appl. Sci. 2024, 14, 232. https://doi.org/10.3390/app14010232
Llinares C, Higuera-Trujillo JL, Montañana A. A Comparative Study of Real and Virtual Environment via Psychological and Physiological Responses. Applied Sciences. 2024; 14(1):232. https://doi.org/10.3390/app14010232
Chicago/Turabian StyleLlinares, Carmen, Juan Luis Higuera-Trujillo, and Antoni Montañana. 2024. "A Comparative Study of Real and Virtual Environment via Psychological and Physiological Responses" Applied Sciences 14, no. 1: 232. https://doi.org/10.3390/app14010232
APA StyleLlinares, C., Higuera-Trujillo, J. L., & Montañana, A. (2024). A Comparative Study of Real and Virtual Environment via Psychological and Physiological Responses. Applied Sciences, 14(1), 232. https://doi.org/10.3390/app14010232