A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements
Abstract
:1. Introduction
2. Materials and Methods
- UV Camera: IMPERX GEV B1620M, frame rate: 35 fps
- Hyperspectral Camera: Photonfocus MV1-D2048x1088-HS02-96-G2, frame rate: 42 fps
- Infrared Camera: Flir A715, frame rate: 30 fps
2.1. Algorithm
- Capture raw dataThe images are captured during translation of the object while making sure that the start and end of the object are fully recorded. This is displayed graphically in Figure 4 in rows 1–2.
- Preprocess dataDepending on the camera type, preprocessing is required, e.g., NUC (non-uniformity correction) for IR cameras or demosaicing for snapshot HSI cameras.
- Find pixel shiftTo calculate the pixel shift from frame n to n + 1, we present two methods. The first method is to detect and track a checkerboard in a sequence of frames. The upper left corner of the checkerboard is tracked across a series of frames and fitted with a first-degree function to minimize the error. The other method is to calculate the pixel shift. This is possible if the camera parameters are known. For more details, see Section 2.1.1 [24].
- Factorize pixel shiftThe pixel shift is converted to a fraction with a maximum denominator of 10. The maximum denominator is chosen empirically to limit the computational cost while still providing an accurate result. One should consider the necessary accuracy needed for the application versus the computational cost.
- Upscale the imagesThe preprocessed images are resized in length, through interpolation, by a factor equal to the denominator of the previously calculated fraction.
- Create a temporal matrixThis step consists of a main loop and a nested loop. The main loop iterates over all the different frames of the temporal matrix. The number of frames is calculated by , where is the resulting number of frames in the temporal matrix and l is the length of a single frame from the original sequence. The nested loop iterates over the original sequence and copies the corresponding rows from the original sequence into the temporal matrix. This step is shown below in pseudocode Algorithm 1:
with as the amount of original frames, as the temporal matrix, as the upscaled sequence, N as the numerator, as the original measured matrix and D as the denominator of the fraction pixel shift. This operation is displayed in rows 5–6 of Figure 4.Algorithm 1 Creating the temporal matrix - for do
- for do
- Where = line: from frame k
- Where = line: from frame j
- end for
- end for
- Correct temporal matrixThe temporal matrix indicates a shift of the object in the direction of translation. This can be corrected by shifting the image.
- Downscale the imagesThe resulting temporal matrix is scaled down in length by a factor equal to the denominator of the previously calculated fraction.
2.1.1. Calculating Correction Factor without the Use of a Checkerboard
2.1.2. Algorithm Performance
- CPU: Intel i7 6 cores-2.6Ghz
- RAM: 32 GB
3. Results
3.1. IR Camera
3.2. UV Camera
3.3. HSI Camera
4. Discussion and Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eisenmann, D.J.; Enyart, D.; Lo, C.; Brasche, L. Review of progress in magnetic particle inspection. Aip Conf. Proc. 2014, 1581, 1505–1510. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Gan, T.H. Non-destructive evaluation (NDE) of Composites: Infrared (IR) thermography of wind turbine blades. In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Woodhead Publishing: Sawston, UK, 2013; pp. 634–648. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos. Struct. 2021, 256, 112951. [Google Scholar] [CrossRef]
- Khodayar, F.; Sojasi, S.; Maldague, X. Infrared thermography and NDT: 2050 horizon. Quant. Infrared Thermogr. J. 2016, 13, 210–231. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Adao, T.; Hruska, J.; Padua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Edelman, G.; Gaston, E.; van Leeuwen, T.; Cullen, P.; Aalders, M. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 2012, 223, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Kuula, J.; Pölönen, I.; Puupponen, H.H.; Selander, T.; Reinikainen, T.; Kalenius, T.; Saari, H. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details. In Proceedings of the Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI, Orlando, FL, USA, 25–28 April 2011; Carapezza, E.M., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8359, pp. 150–160. [Google Scholar] [CrossRef]
- Wilczyński, S.; Koprowski, R.; Marmion, M.; Duda, P.; Błońska-Fajfrowska, B. The use of hyperspectral imaging in the VNIR (400–1000 nm) and SWIR range (1000–2500 nm) for detecting counterfeit drugs with identical API composition. Talanta 2016, 160, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Krieger, E.; Zbur, L.; Gilligan, J.; Beideman, R.; Beckstead, J.; Klueva, O.; Conner, M.; Maney, E.; Treadoa, P. Sprayed or Soaked Concealed Drug Detection using SWIR Hyperspectral Imaging. In Proceedings of the Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXVI, Online, 27 April–8 May 2020; VelezReyes, M., Messinger, D.W., Eds.; Proceedings of SPIE. SPIE: Bellingham, WA, USA, 2020; Volume 11392. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, J.; Member, S.; Zhao, H.; Windmill, J.F.C.; Ijomah, W.; Wit, J.D.; Freeden, J.V.; Centre, N.S. Non-destructive Testing of Composite Fibre Materials with Hyperspectral Imaging – Evaluative Studies in the EU H2020 FibreEUse Project. IEEE Trans. Instrum. Meas. 2022, 71, 6002213. [Google Scholar] [CrossRef]
- De Kerf, T.; Pipintakos, G.; Zahiri, Z.; Vanlanduit, S.; Scheunders, P. Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging. Sensors 2022, 22, 407. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Geelen, B.; Tack, N.; Lambrechts, A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, CA, USA, 3–5 February 2014; von Freymann, G., Schoenfeld, W.V., Rumpf, R.C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2014; Volume 8974, pp. 80–87. [Google Scholar] [CrossRef]
- Tack, N.; Lambrechts, A.; Soussan, P.; Haspeslagh, L. A compact, high-speed, and low-cost hyperspectral imager. In Proceedings of the Silicon Photonics VII, San Francisco, CA, USA, 2 February 2012; Kubby, J., Reed, G.T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8266, pp. 126–138. [Google Scholar] [CrossRef]
- Ben Yosef, N.; Almog, J.; Frank, A.; Springer, E.; Cantu, A. Short UV luminescence for forensic applications: Design of a real-time observation system for detection of latent fingerprints and body fluids. J. Forensic Sci. 1998, 43, 299–304. [Google Scholar] [PubMed]
- De Angelis, D.; Mapelli, G.; Mazzullo, F.L.; Lorenz, M.T.; Cattaneo, C. Possible applications of reflected UV photography in forensic odontology: Food for thought. Leg. Med. 2020, 42, 101641. [Google Scholar] [CrossRef] [PubMed]
- Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. Discovering the Defects in Paintings Using Non-destructive Testing (NDT) Techniques and Passing Through Measurements of Deformation. J. Nondestruct. Eval. 2014, 33, 358–383. [Google Scholar] [CrossRef]
- Nisulescu, G.C.; Ionel, I.; Malan, B.; Dobrin, M. Remote SO2 Monitoring with UV Cameras for Stack Emissions. Rev. Chim. 2012, 63, 940–944. [Google Scholar]
- Cantor, S.E. Non-destructive inspection of coatings based on enhanced fluorescent response. Met. Finish. 2009, 107, 58–61. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, L.; Wang, L. Investigation of light scattering for scratch detection. In Proceedings of the Ninth International Symposium on Laser Metrology, Singapore, 30 June–2 July 2008; Volume 7155. [Google Scholar] [CrossRef]
- Verspeek, S.; Gladines, J.; Ribbens, B.; Maldague, X.; Steenackers, G. Dynamic Line Scan Thermography Optimisation Using Response Surfaces Implemented on PVC Flat Bottom Hole Plates. Appl. Sci. 2021, 11, 1538. [Google Scholar] [CrossRef]
- Khodayar, F.; Lopez, F.; Ibarra-Castanedo, C.; Maldague, X. Optimization of the Inspection of Large Composite Materials Using Robotized Line Scan Thermography. J. Nondestruct. Eval. 2017, 36, 32. [Google Scholar] [CrossRef]
- Geiger, A.; Moosmann, F.; Car, O.; Schuster, B. Automatic Calibration of Range and Camera Sensors using a single Shot. In Proceedings of the International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, 14–18 May 2012. [Google Scholar]
UV | MSI | IR | |
---|---|---|---|
Frame size (pixels) | 1208 × 1608 | 408 × 208 | 640 × 480 |
Number of frames | 498 | 710 | 1008 |
Processing time of algorithm (s) | 434 | 89 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verspeek, S.; De Kerf, T.; Ribbens, B.; Maldague, X.; Vanlanduit, S.; Steenackers, G. A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements. Appl. Sci. 2024, 14, 235. https://doi.org/10.3390/app14010235
Verspeek S, De Kerf T, Ribbens B, Maldague X, Vanlanduit S, Steenackers G. A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements. Applied Sciences. 2024; 14(1):235. https://doi.org/10.3390/app14010235
Chicago/Turabian StyleVerspeek, Simon, Thomas De Kerf, Bart Ribbens, Xavier Maldague, Steve Vanlanduit, and Gunther Steenackers. 2024. "A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements" Applied Sciences 14, no. 1: 235. https://doi.org/10.3390/app14010235
APA StyleVerspeek, S., De Kerf, T., Ribbens, B., Maldague, X., Vanlanduit, S., & Steenackers, G. (2024). A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements. Applied Sciences, 14(1), 235. https://doi.org/10.3390/app14010235